Role of Leucine Zipper Motifs in Association of the Escherichia coli Cell Division Proteins FtsL and FtsB

Institut Pasteur, CNRS URA 2185, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.
Journal of bacteriology (Impact Factor: 2.69). 07/2011; 193(18):4988-92. DOI: 10.1128/JB.00324-11
Source: PubMed

ABSTRACT FtsL and FtsB are two inner-membrane proteins that are essential constituents of the cell division apparatus of Escherichia coli. In this study, we demonstrate that the leucine zipper-like (LZ) motifs, located in the periplasmic domain of FtsL and FtsB, are required for an optimal interaction between these two essential proteins.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The cytokinetic apparatus of bacteria is initially formed by the polymerization of the tubulin-like FtsZ protein into a ring structure at midcell. This so-called Z-ring facilitates the recruitment of many additional proteins to the division site to form the mature divisome machine. Although the assembly pathway leading to divisome formation has been well characterized, the mechanisms that trigger cell constriction remain unclear. In this report, we study a “forgotten” allele of ftsL from Escherichia coli, which encodes a conserved division gene of unknown function. We discovered that this allele promotes the premature initiation of cell division. Further analysis also revealed that the mutant bypasses the requirement for the essential division proteins ZipA, FtsK, and FtsN and partially bypasses the need for FtsA. These findings suggest that rather than serving simply as a protein scaffold within the divisome, FtsL may play a more active role in the activation of the machine. Our results support a model in which FtsL, along with its partners FtsB and FtsQ, function as part of a sensing mechanism that promotes the onset of cell wall remodeling processes needed for the initiation of cell constriction once assembly of the divisome complex is deemed complete.
    Molecular Microbiology 12/2014; 95(6). DOI:10.1111/mmi.12905 · 5.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The peptidoglycan cell wall of bacteria is a complex macromolecule composed of glycan strands that are crosslinked by short peptide bridges. Its biosynthesis involves a conserved group of enzymes, the bifunctional penicillin-binding proteins (bPBPs), which contain both a transglycosylase and a transpeptidase domain, thus being able to elongate the glycan strands and, at the same time, generate the peptide crosslinks. The stalked model bacterium Caulobacter crescentus possesses five bPBP paralogs, named Pbp1A, PbpC, PbpX, PbpY and PbpZ, whose function is still incompletely understood. In this study, we show that any of these proteins except for PbpZ is sufficient for growth and normal morphogenesis when expressed at native or elevated levels, whereas inactivation of all five paralogs is lethal. Growth analyses indicate a central role of PbpX in the resistance of C. crescentus against the non-canonical amino acid D-alanine. Moreover, we show that PbpX and PbpY localize to the cell division site. Their recruitment to the divisome is dependent on the essential cell division protein FtsN and likely involves interactions with FtsL and the putative peptidoglycan hydrolase DipM. The same interaction pattern is observed for Pbp1A and PbpC, although these proteins do not accumulate at midcell. Our findings demonstrate that the bPBPs of C. crescentus are, to a large extent, redundant and have retained the ability to interact with the peptidoglycan biosynthetic machineries responsible for cell elongation, cytokinesis and stalk growth. Nevertheless, they may preferentially act in specific peptidoglycan biosynthetic complexes, thereby facilitating the independent regulation of distinct growth processes.
    Journal of bacteriology 02/2014; DOI:10.1128/JB.01194-13 · 2.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: FtsB and FtsL are two essential integral membrane proteins of the bacterial division complex or "divisome", both characterized by a single transmembrane helix and a juxta-membrane coiled coil domain. The two domains are important for the association of FtsB and FtsL, a key event for their recruitment to the divisome, that in turn enables recruitment of the late divisomal components to the Z-ring and subsequent completion of the division process. Here we present a biophysical analysis performed in vitro that shows that the transmembrane domains of FtsB and FtsL associate strongly in isolation. Using FRET, we have measured the oligomerization of fluorophore-labeled transmembrane domains of FtsB and FtsL in both detergent and lipid. The data indicates that the transmembrane helices are likely a major contributor to the stability of the FtsB-FtsL complex. Our analyses show that FtsB and FtsL form a 1:1 higher-order oligomeric complex, possibly a tetramer. This finding suggests that the FtsB-FtsL complex is capable of multi-valent binding to FtsQ and other divisome components, a hypothesis that is consistent with the possibility that the FtsB-FtsL complex has a structural role in the stabilization of the Z-ring.
    Biochemistry 10/2013; 52(43). DOI:10.1021/bi4009837 · 3.19 Impact Factor


Available from