Progressive Brain Change in Schizophrenia: A Prospective Longitudinal Study of First-Episode Schizophrenia

Psychiatric Iowa Neuroimaging Consortium, The University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA.
Biological psychiatry (Impact Factor: 9.47). 07/2011; 70(7):672-9. DOI: 10.1016/j.biopsych.2011.05.017
Source: PubMed

ABSTRACT Schizophrenia has a characteristic onset during adolescence or young adulthood but also tends to persist throughout life. Structural magnetic resonance studies indicate that brain abnormalities are present at onset, but longitudinal studies to assess neuroprogression have been limited by small samples and short or infrequent follow-up intervals.
The Iowa Longitudinal Study is a prospective study of 542 first-episode patients who have been followed up to 18 years. In this report, we focus on those patients (n = 202) and control subjects (n = 125) for whom we have adequate structural magnetic resonance data (n = 952 scans) to provide a relatively definitive determination of whether progressive brain change occurs over a time interval of up to 15 years after intake.
A repeated-measures analysis showed significant age-by-group interaction main effects that represent a significant decrease in multiple gray matter regions (total cerebral, frontal, thalamus), multiple white matter regions (total cerebral, frontal, temporal, parietal), and a corresponding increase in cerebrospinal fluid (lateral ventricles and frontal, temporal, and parietal sulci). These changes were most severe during the early years after onset. They occur at severe levels only in a subset of patients. They are correlated with cognitive impairment but only weakly with other clinical measures.
Progressive brain change occurs in schizophrenia, affects both gray matter and white matter, is most severe during the early stages of the illness, and occurs only in a subset of patients. Measuring severity of progressive brain change offers a promising new avenue for phenotype definition in genetic studies of schizophrenia.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent data suggest that treatment with antipsychotics is associated with reductions in cortical gray matter in patients with schizophrenia. These findings have led to concerns about the effect of antipsychotic treatment on brain structure and function; however, no studies to date have measured cortical function directly in individuals with schizophrenia and shown antipsychotic-related reductions of gray matter. To examine the effects of antipsychotics on brain structure and function in patients with first-episode schizophrenia, using cortical thickness measurements and administration of the AX version of the Continuous Performance Task (AX-CPT) during event-related functional magnetic resonance imaging. This case-control cross-sectional study was conducted at the Imaging Research Center of the University of California, Davis, from November 2004 through July 2012. Participants were recruited on admission into the Early Diagnosis and Preventive Treatment Clinic, an outpatient clinic specializing in first-episode psychosis. Patients with first-episode schizophrenia who received atypical antipsychotics (medicated patient group) (n = 23) and those who received no antipsychotics (unmedicated patient group) (n = 22) and healthy control participants (n = 37) underwent functional magnetic resonance imaging using a 1.5-T scanner. Behavioral performance was measured by trial accuracy, reaction time, and d'-context score. Voxelwise statistical parametric maps tested differences in functional activity during the AX-CPT, and vertexwise maps of cortical thickness tested differences in cortical thickness across the whole brain. Significant cortical thinning was identified in the medicated patient group relative to the control group in prefrontal (mean reduction [MR], 0.27 mm; P < .001), temporal (MR, 0.34 mm; P = .02), parietal (MR, 0.21 mm; P = .001), and occipital (MR, 0.24 mm; P = .001) cortices. The unmedicated patient group showed no significant cortical thickness differences from the control group after clusterwise correction. The medicated patient group showed thinner cortex compared with the unmedicated patient group in the dorsolateral prefrontal cortex (DLPFC) (MR, 0.26 mm; P = .001) and temporal cortex (MR, 0.33 mm; P = .047). During the AX-CPT, both patient groups showed reduced DLPFC activity compared with the control group (P = .02 compared with the medicated group and P < .001 compared with the unmedicated group). However, the medicated patient group demonstrated higher DLPFC activation (P = .02) and better behavioral performance (P = .02) than the unmedicated patient group. These findings highlight the complex relationship between antipsychotic treatment and the structural, functional, and behavioral deficits repeatedly identified in schizophrenia. Although short-term treatment with antipsychotics was associated with prefrontal cortical thinning, treatment was also associated with better cognitive control and increased prefrontal functional activity. This study adds important context to the growing literature on the effects of antipsychotics on the brain and suggests caution in interpreting neuroanatomical changes as being related to a potentially adverse effect on brain function.
    JAMA Psychiatry 01/2015; 72(3). DOI:10.1001/jamapsychiatry.2014.2178 · 12.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although diagnosis is a central issue in medical care, in psychiatry its value is still controversial. The function of diagnosis is to indicate treatments and to help clinicians take better care of patients. The fundamental role of diagnosis is to predict outcome and prognosis. To date serious concern persists regarding the clinical utility and predictive validity of the diagnosis system in psychiatry, which is at the most syndromal. Schizophrenia and bipolar disorder, which nosologists consider two distinct disorders, are the most discussed psychiatric illnesses. Recent findings in different fields of psychiatric research, such as neuroimaging, neuropathology, neuroimmunology, neuropsychology and genetics, have led to other conceptualizations. Individuals with schizophrenia or bipolar disorder vary greatly with regard to symptoms, illness course, treatment response, cognitive and functional impairment and biological correlates. In fact, it is possible to find heterogeneous correlates even within the same syndrome, i.e., from one stage of the disorder to another. Thus, it is possible to identify different subsyndromes, which share some clinical and neurobiological characteristics. The main goal of modern psychiatry is to ovethrow these barriers and to obtain a better understanding of the biological profiles underlying heterogeneous clinical features and thus reduce the variance and lead to a homogeneous definition. The translational research model, which connects the basic neuroscience research field with clinical experience in psychiatry, aims to investigate different neurobiological features of syndromes and of the shared neurobiological features between two syndromes. In fact, this approach should help us to better understand the neurobiological pathways underlying clinical entities, and even to distinguish different, more homogeneous, diagnostic subtypes. Copyright © 2015. Published by Elsevier B.V.
    Clinica Chimica Acta 02/2015; DOI:10.1016/j.cca.2015.02.029 · 2.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuropsychological impairment and abnormalities in brain structure are commonly observed in psychotic disorders, including schizophrenia and bipolar disorder. Shared deficits in neuropsychological functioning and abnormalities in brain structure suggest overlapping neuropathology between schizophrenia and bipolar disorder which has important implications for psychiatric nosology, treatment, and our understanding of the etiology of psychotic illnesses. However, the emergence and trajectory of brain dysfunction in psychotic disorders is less well understood. Differences in the course and progression of neuropsychological impairment and brain abnormalities among psychotic disorders may point to unique neuropathological processes. This article reviews the course of neuropsychological impairment and brain structure abnormalities in schizophrenia and bipolar disorder.
    Neuroscience Research 08/2014; DOI:10.1016/j.neures.2014.08.006 · 2.15 Impact Factor


Available from