Article

Building distinct actin filament networks in a common cytoplasm.

Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA.
Current biology: CB (Impact Factor: 10.99). 07/2011; 21(14):R560-9. DOI: 10.1016/j.cub.2011.06.019
Source: PubMed

ABSTRACT Eukaryotic cells generate a diversity of actin filament networks in a common cytoplasm to optimally perform functions such as cell motility, cell adhesion, endocytosis and cytokinesis. Each of these networks maintains precise mechanical and dynamic properties by autonomously controlling the composition of its interacting proteins and spatial organization of its actin filaments. In this review, we discuss the chemical and physical mechanisms that target distinct sets of actin-binding proteins to distinct actin filament populations after nucleation, resulting in the assembly of actin filament networks that are optimized for specific functions.

0 Bookmarks
 · 
125 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High-speed atomic force microscopy was employed to observe structural changes in actin filaments induced by cofilin binding. Consistent with previous electron and fluorescence microscopic studies, cofilin formed clusters along actin filaments, where the filaments were 2-nm thicker and the helical pitch was ∼25% shorter, compared to control filaments. Interestingly, the shortened helical pitch was propagated to the neighboring bare zone on the pointed-end side of the cluster, while the pitch on the barbed-end side was similar to the control. Thus, cofilin clusters induce distinctively asymmetric conformational changes in filaments. Consistent with the idea that cofilin favors actin structures with a shorter helical pitch, cofilin clusters grew unidirectionally toward the pointed-end of the filament. Severing was often observed near the boundaries between bare zones and clusters, but not necessarily at the boundaries.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since its discovery by Bliss and Lomo, the phenomenon of long-term potentiation (LTP) has been extensively studied, as it was viewed as a potential cellular mechanism of learning and memory. Over the years, many signaling cascades have been implicated in its induction, consolidation and maintenance, raising questions regarding its real significance. Here, we review several of the most commonly studies signaling cascades and discuss how they converge on a common set of mechanisms likely to be involved in the maintenance of LTP. We further argue that the existence of cross-talks between these different signaling cascades can not only account for several discrepancies in the literature, but also account for the existence of different forms of LTP, which can be engaged by different types of stimulus parameters under different experimental conditions. Finally, we discuss how the understanding of the diversity of LTP mechanisms can help us understand the diversity of the types of learning and memory. Copyright © 2014. Published by Elsevier B.V.
    Brain Research 12/2014; DOI:10.1016/j.brainres.2014.11.033 · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fission yeast cells use Arp2/3 complex and formin to assemble diverse filamentous actin (F-actin) networks within a common cytoplasm for endocytosis, division, and polarization. Although these homeostatic F-actin networks are usually investigated separately, competition for a limited pool of actin monomers (G-actin) helps to regulate their size and density. However, the mechanism by which G-actin is correctly distributed between rival F-actin networks is not clear. Using a combination of cell biological approaches and in vitro reconstitution of competition between actin assembly factors, we found that the small G-actin binding protein profilin directly inhibits Arp2/3 complex-mediated actin assembly. Profilin is therefore required for formin to compete effectively with excess Arp2/3 complex for limited G-actin and to assemble F-actin for contractile ring formation in dividing cells. Copyright © 2015 Elsevier Inc. All rights reserved.

Full-text (2 Sources)

Download
39 Downloads
Available from
Jun 5, 2014