Therapeutic strategies for targeting ras proteins.

UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
Genes & cancer 03/2011; 2(3):359-72. DOI: 10.1177/1947601911412376
Source: PubMed

ABSTRACT Ras genes are frequently activated in cancer. Attempts to develop drugs that target mutant Ras proteins have, so far, been unsuccessful. Tumors bearing these mutations, therefore, remain among the most difficult to treat. Most efforts to block activated Ras have focused on pathways downstream. Drugs that inhibit Raf kinase have shown clinical benefit in the treatment of malignant melanoma. However, these drugs have failed to show clinical benefit in Ras mutant tumors. It remains unclear to what extent Ras depends on Raf kinase for transforming activity, even though Raf proteins bind directly to Ras and are certainly major effectors of Ras action in normal cells and in development. Furthermore, Raf kinase inhibitors can lead to paradoxical activation of the MAPK pathway. MEK inhibitors block the Ras-MAPK pathway, but often activate the PI3'-kinase, and have shown little clinical benefit as single agents. This activation is mediated by EGF-R and other receptor tyrosine kinases through relief of a negative feedback loop from ERK. Drug combinations that target multiple points within the Ras signaling network are likely to be necessary to achieve substantial clinical benefit. Other effectors may also contribute to Ras signaling and provide a source of targets. In addition, unbiased screens for genes necessary for Ras transformation have revealed new potential targets and have added to our understanding of Ras cancer biology.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GTPases and kinases are two predominant signaling modules that regulate cell fate. Dysregulation of Ras, a GTPase, and the three eponymous kinases that form key nodes of the associated phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K)/AKT/mTOR pathway have been implicated in many cancers, including pancreatic cancer, a disease noted for its current lack of effective therapeutics. The K-Ras isoform of Ras is mutated in over 90% of pancreatic ductal adenocarcinomas (PDAC) and there is growing evidence linking aberrant PI3K/AKT/mTOR pathway activity to PDAC. Although these observations suggest that targeting one of these nodes might lead to more effective treatment options for patients with pancreatic and other cancers, the complex regulatory mechanisms and the number of sequence-conserved isoforms of these proteins have been viewed as significant barriers in drug development. Emerging insights into the allosteric regulatory mechanisms of these proteins suggest novel opportunities for development of selective allosteric inhibitors with fragment-based drug discovery (FBDD) helping make significant inroads. The fact that allosteric inhibitors of Ras and AKT are currently in pre-clinical development lends support to this approach. In this article, we will focus on the recent advances and merits of developing allosteric drugs targeting these two inter-related signaling pathways.
    Frontiers in Physiology 12/2014; 5:478. DOI:10.3389/fphys.2014.00478
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ras pathway signaling is a critical virulence determinant for pathogenic fungi. Localization of Ras to the plasma membrane (PM) is required for Ras network interactions supporting fungal growth and virulence. For example, loss of Aspergillus fumigatus RasA signaling at the PM via inhibition of palmitoylation leads to decreased growth, altered hyphal morphogenesis, decreased cell wall integrity and loss of virulence. In order to be properly localized and activated, Ras proteins must transit a series of post-translational modification (PTM) steps. These steps include farnesylation, proteolytic cleavage of terminal amino acids, carboxymethylation, and palmitoylation. Because Ras activation drives tumor development, Ras pathways have been extensively studied in mammalian cells as a potential target for anti-cancer therapy. Inhibitors of mammalian Ras interactions and PTM components have been, or are actively being, developed. This review will focus on the potential for building upon existing scaffolds to exploit fungal Ras proteins for therapy, synthesizing data from studies employing both mammalian and fungal systems.
    Frontiers in Microbiology 02/2015; 6:128. DOI:10.3389/fmicb.2015.00128 · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Expression of miRNAs in Neuroendocrine Neoplasms (NEN) is poorly characterized. We therefore wanted to examine the miRNA expression in Neuroendocrine Tumors (NETs), and identify their targets and importance in NET carcinogenesis. miRNA expression in six NEN primary tumors, six NEN metastases and four normal intestinal tissues was characterized using miRNA arrays, and validated by in-situ hybridization and qPCR. Among the down-regulated miRNAs miR-129-5p and the let-7f/let-7 family, were selected for further characterization. Transfection of miR-129-5p inhibited growth of a pulmonary and an intestinal carcinoid cell line. Analysis of mRNA expression changes identified EGR1 and G3BP1 as miR-129-5p targets. They were validated by luciferase assay and western blotting, and found robustly expressed in NETs by immunohistochemistry. Knockdown of EGR1 and G3BP1 mimicked the growth inhibition induced by miR-129-5p. let-7 overexpression inhibited growth of carcinoid cell lines, and let-7 inhibition increased protein content of the transcription factor BACH1 and its targets MMP1 and HMGA2, all known to promote bone metastases. Immunohistochemistry analysis revealed that let-7 targets are highly expressed in NETs and metastases. We found down-regulation of miR-129-5p and the let-7 family, and identified new neuroendocrine specific targets for these miRNAs, which contributes to the growth and metastatic potential of these tumors.
    12/2014; 6(1):1-21. DOI:10.3390/genes6010001


Available from