Article

Aortic Aneurysm Generation in Mice With Targeted Deletion of Integrin-Linked Kinase in Vascular Smooth Muscle Cells

Cardiovascular Research Center, Massachusetts General Hospital East-8307, Charlestown, MA 02129, USA.
Circulation Research (Impact Factor: 11.09). 07/2011; 109(6):616-28. DOI: 10.1161/CIRCRESAHA.110.239343
Source: PubMed

ABSTRACT Integrin-linked kinase (ILK) is located at focal adhesions and links the extracellular matrix (ECM) to the actin cytoskeleton via β1- and β3-integrins. ILK plays a role in the activation of kinases including protein kinase B/Akt and glycogen synthase kinase 3β and regulates cell proliferation, motility, and survival.
To determine the function of ILK in vascular smooth muscle cells (SMCs) in vivo.
SM22Cre(+)Ilk(Fl/Fl) conditional mutant mice were generated in which the Ilk gene was selectively ablated in SMCs. SM22Cre(+)Ilk(Fl/Fl) conditional mutant mice survive to birth but die in the perinatal period exhibiting multiple vascular pathologies including aneurysmal dilatation of the aorta and patent ductus arteriosus (PDA). Defects in morphogenetic development of the aorta were observed as early as E12.5 in SM22Cre(+)Ilk(Fl/Fl) mutant embryos. By late gestation (E16.5 to 18.5), striking expansion of the thoracic aorta was observed in ILK mutant embryos. Histological analyses revealed that the structural organization of the arterial tunica media is severely disrupted with profound derangements in SMC morphology, cell-cell, and cell-matrix relationships, including disruption of the elastic lamellae. ILK deletion in primary aortic SMCs results in alterations of RhoA/cytoskeletal signaling transduced through aberrant localization of myocardin-related transcription factor (MRTF)-A repressing the transcription and expression of SMC genes, which are required for the maintenance of the contractile SMC phenotype.
These data identify a molecular pathway linking ILK signaling to the contractile SMC gene program. Activation of this pathway is required for morphogenetic development of the aorta and ductus arteriosus during embryonic and postnatal survival.

Download full-text

Full-text

Available from: Dongxiao Shen, Aug 29, 2015
0 Followers
 · 
131 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in myosin heavy chain (MYH11) cause autosomal dominant inheritance of thoracic aortic aneurysms and dissections. At the same time, rare, nonsynonymous variants in MYH11 that are predicted to disrupt protein function but do not cause inherited aortic disease are common in the general population and the vascular disease risk associated with these variants is unknown. To determine the consequences of the recurrent MYH11 rare variant, R247C, through functional studies in vitro and analysis of a knock-in mouse model with this specific variant, including assessment of aortic contraction, response to vascular injury, and phenotype of primary aortic smooth muscle cells (SMCs). The steady state ATPase activity (actin-activated) and the rates of phosphate and ADP release were lower for the R247C mutant myosin than for the wild-type, as was the rate of actin filament sliding in an in vitro motility assay. Myh11(R247C/R247C) mice exhibited normal growth, reproduction, and aortic histology but decreased aortic contraction. In response to vascular injury, Myh11(R247C/R247C) mice showed significantly increased neointimal formation due to increased SMC proliferation when compared with the wild-type mice. Primary aortic SMCs explanted from the Myh11(R247C/R247C) mice were dedifferentiated compared with wild-type SMCs based on increased proliferation and reduced expression of SMC contractile proteins. The mutant SMCs also displayed altered focal adhesions and decreased Rho activation, associated with decreased nuclear localization of myocardin-related transcription factor-A. Exposure of the Myh11(R247C/R247C) SMCs to a Rho activator rescued the dedifferentiated phenotype of the SMCs. These results indicate that a rare variant in MYH11, R247C, alters myosin contractile function and SMC phenotype, leading to increased proliferation in vitro and in response to vascular injury.
    Circulation Research 04/2012; 110(11):1411-22. DOI:10.1161/CIRCRESAHA.111.261743 · 11.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the current review, we summarize recent progress on vasculature-specific function and regulation of integrins and integrin-associated proteins, including advances in our understanding of inside-out integrin activation. The studies on regulation of integrin activation received new impulse in 2009 with the identification of kindlin protein family members as crucial mediators of integrin inside-out signaling. In the current review, we outline the recent findings on the role of kindlins in the vascular system, as well as new studies that have begun shaping the mechanistic model of kindlins' function. Several tissue-specific knockout models for integrins and genes associated with the integrin functions have been recently presented, including smooth muscle-specific integrin-linked kinase and endothelial-specific focal adhesion kinase and talin-1 ablation. In the heterozygous animal knockout model, kindlin-2 has been demonstrated as a crucial modulator of angiogenesis and vascular permeability. As a number of articles have advanced our understanding of kindlin function, they are reviewed and discussed in further detail. New findings include an additional lipid-binding site within the kindlin molecule and preferential binding of the nonphosphorylated form of β-integrins. The role of integrins in angiogenesis has been demonstrated to include, in addition to cell adhesion and mechanotransduction, specific signaling functions. The importance of integrin inside-out pathway in vascular physiology has been unequivocally proven, and endothelial permeability is directly regulated by this process. Inhibition of kindlin-dependent steps in the inside-out pathway as an approach to block platelet aggregation should be paralog-specific, as it may have adverse effects on vascular permeability.
    Current opinion in hematology 05/2012; 19(3):206-11. DOI:10.1097/MOH.0b013e3283523df0 · 4.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Differences in local blood flow patterns along the endothelium may trigger abnormal vascular responses which can have profound pathophysiological consequences. While endothelial cells exposed to laminar blood flow (high shear stress) are protected from atherosclerosis formation, turbulent or disturbed blood flow, which occurs at bends and bifurcations of blood vessels, facilitates atherosclerosis formation. Here, we will highlight the endothelial cell mechanisms involved in detecting shear stress and their translation into downstream biochemical signals. Prior evidence supports a role for integrins as mechanotransducers in the endothelium by promoting phosphorylation of different targets through the activation of focal adhesion kinase. Our recent findings show that integrins contact integrin-linked kinase and regulate vasomotor responses by an endothelial nitric oxide synthase-dependent mechanism, which stabilizes the production of vasoactive factor nitric oxide. In addition, different structures of endothelial cells, mainly primary cilia, are investigated, as they can explain the differential responses to laminar versus disturbed flow. The discovery of a connection between endothelial cell structures such as cilia, integrin, extracellular matrix, and signaling events opens today a new chapter in our understanding of the molecular mechanisms regulating vascular responses to the changes in flow.
    Current opinion in lipidology 10/2012; 23(5):446-52. DOI:10.1097/MOL.0b013e328357e837 · 5.80 Impact Factor
Show more