Endothelin-1, the unfolded protein response, and persistent inflammation: role of pulmonary artery smooth muscle cells.

Division of Pulmonary, and Critical Care Medicine, Department of Pediatrics, University of Colorado at Denver, Aurora, 80138, USA.
American Journal of Respiratory Cell and Molecular Biology (Impact Factor: 4.15). 07/2011; 46(1):14-22. DOI: 10.1165/rcmb.2010-0506OC
Source: PubMed

ABSTRACT Endothelin-1 is a potent vasoactive peptide that occurs in chronically high levels in humans with pulmonary hypertension and in animal models of the disease. Recently, the unfolded protein response was implicated in a variety of diseases, including pulmonary hypertension. In addition, evidence is increasing for pathological, persistent inflammation in the pathobiology of this disease. We investigated whether endothelin-1 might engage the unfolded protein response and thus link inflammation and the production of hyaluronic acid by pulmonary artery smooth muscle cells. Using immunoblot, real-time PCR, immunofluorescence, and luciferase assays, we found that endothelin-1 induces both a transcriptional and posttranslational activation of the three major arms of the unfolded protein response. The pharmacologic blockade of endothelin A receptors, but not endothelin B receptors, attenuated the observed release, as did a pharmacologic blockade of extracellular signal-regulated kinases 1 and 2 (ERK-1/2) signaling. Using short hairpin RNA and ELISA, we observed that the release by pulmonary artery smooth muscle cells of inflammatory modulators, including hyaluronic acid, is associated with endothelin-1-induced ERK-1/2 phosphorylation and the unfolded protein response. Furthermore, the synthesis of hyaluronic acid induced by endothelin-1 is permissive for persistent THP-1 monocyte binding. These results suggest that endothelin-1, in part because it induces the unfolded protein response in pulmonary artery smooth muscle cells, triggers proinflammatory processes that likely contribute to vascular remodeling in pulmonary hypertension.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxic pulmonary hypertension (PH) comprises a heterogeneous group of diseases sharing the common feature of chronic hypoxia-induced pulmonary vascular remodeling. The disease is usually characterized by mild to moderate pulmonary vascular remodeling that is largely thought to be reversible as compared with the progressive irreversible disease seen in World Health Organization (WHO) group I disease. However, in these patients the presence of PH significantly worsens morbidity and mortality. In addition, a small subset of patients with hypoxic PH develop "out-of-proportion" severe pulmonary hypertension characterized by pulmonary vascular remodeling that is irreversible and similar to that in WHO group 1 disease. In all cases of hypoxia-related vascular remodeling and PH, inflammation, particularly persistent inflammation, is thought to play a role. This review focuses on the effects of hypoxia on pulmonary vascular cells and the signaling pathways involved in the initiation and perpetuation of vascular inflammation, especially as they relate to vascular remodeling and transition to chronic irreversible pulmonary hypertension. We hypothesize that the combination of hypoxia and local tissue factors/cytokines ("second hit") antagonizes tissue homeostatic cellular interactions between mesenchymal cells (fibroblasts and/or smooth muscle cells) and macrophages and arrests these cells in an epigenetically locked and permanently activated pro-remodeling and pro-inflammatory phenotype. This aberrant cellular cross-talk between mesenchymal cells and macrophages promotes transition to chronic non-resolving inflammation and vascular remodeling perpetuating PH. A better understanding of these signaling pathways may lead to the development of specific therapeutic targets, as none are currently available for WHO group III disease. Copyright © 2014, American Journal of Physiology - Lung Cellular and Molecular Physiology.
    AJP Lung Cellular and Molecular Physiology 11/2014; 308(3):ajplung.00238.2014. · 4.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Numerous molecular abnormalities have been described in pulmonary arterial hypertension (PAH), complicating the translation of candidate therapies to patients because, typically, 1 treatment addresses only 1 abnormality. The realization that in addition to pulmonary artery vascular cells, other tissues and cells are involved in the syndrome of PAH (eg, immune cells, right ventricular cardiomyocytes, skeletal muscle) further complicates the identification of optimal therapeutic targets. Here, we describe a metabolic theory that proposes that many apparently unrelated molecular abnormalities in PAH do have a common denominator; they either cause or promote a mitochondrial suppression (inhibition of glucose oxidation) in pulmonary vascular cells; in turn, the signaling downstream from this mitochondrial suppression can also explain numerous molecular events previously not connected. This integration of signals upstream and downstream of mitochondria has similarities to cancer and can explain many features of the PAH vascular phenotype, including proliferation and apoptosis resistance. This suppression of glucose oxidation (with secondary upregulation of glycolysis) also underlies the abnormalities in extrapulmonary tissues, suggesting a global metabolic disturbance. The metabolic theory places mitochondria at the center stage for our understanding of PAH pathogenesis and for the development of novel diagnostic and therapeutic tools. Current PAH therapies are each addressing 1 abnormality (eg, upregulation of endothelin-1) and were not developed specifically for PAH but for systemic vascular diseases. Compared with the available therapies, mitochondria-targeting therapies have the advantage of addressing multiple molecular abnormalities simultaneously (thus being potentially more effective) and achieving higher specificity because they address PAH-specific biology.
    Circulation Research 06/2014; 115(1):148-64. · 11.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endothelin-1 (ET-1) is a potent endogenous vasoconstrictor, mainly secreted by endothelial cells. It acts through two types of receptors: ETA and ETB. Apart from a vasoconstrictive action, ET-1 causes fibrosis of the vascular cells and stimulates production of reactive oxygen species. It is claimed that ET-1 induces proinflammatory mechanisms, increasing superoxide anion production and cytokine secretion. A recent study has shown that ET-1 is involved in the activation of transcription factors such as NF-κB and expression of proinflammatory cytokines including TNF-α, IL-1, and IL-6. It has been also indicated that during endotoxaemia, the plasma level of ET-1 is increased in various animal species. Some authors indicate a clear correlation between endothelin plasma level and morbidity/mortality rate in septic patients. These pathological effects of ET-1 may be abrogated at least partly by endothelin receptor blockade. ET-1 receptor antagonists may be useful for prevention of various vascular diseases. This review summarises the current knowledge regarding endothelin receptor antagonists and the role of ET-1 in sepsis and inflammation.
    Archivum Immunologiae et Therapiae Experimentalis 10/2014; 63(1). · 2.38 Impact Factor


Available from
May 31, 2014