Article

Initial application of a geometric QA tool for integrated MV and kV imaging systems on three image guided radiotherapy systems.

Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas 75390, USA.
Medical Physics (Impact Factor: 2.91). 05/2011; 38(5):2335-41. DOI: 10.1118/1.3570768
Source: PubMed

ABSTRACT Several linacs with integrated kilovoltage (kV) imaging have been developed for delivery of image guided radiation therapy (IGRT). High geometric accuracy and coincidence of kV imaging systems and megavoltage (MV) beam delivery are essential for successful image guidance. A geometric QA tool has been adapted for routine QA for evaluating and characterizing the geometric accuracy of kV and MV cone-beam imaging systems. The purpose of this work is to demonstrate the application of methodology to routine QA across three IGRT-dedicated linac platforms.
It has been applied to a Varian Trilogy (Varian Medical Systems, Palo Alto, CA), an Elekta SynergyS (Elekta, Stockholm, Sweden), and a Brainlab Vero (Brainlab AG, Feldkirchen, Germany). Both the Trilogy and SynergyS linacs are equipped with a retractable kV x-ray tube and a flat panel detector. The Vero utilizes a rotating, rigid ring structure integrating a MV x-ray head mounted on orthogonal gimbals, an electronic portal imaging device (EPID), two kV x-ray tubes, and two fixed flat panel detectors. This dual kV imaging system provides orthogonal radiographs, CBCT images, and real-time fluoroscopic monitoring. Two QA phantoms were built to suit different field sizes. Projection images of a QA phantom were acquired using MV and kV imaging systems at a series of gantry angles. Software developed for this study was used to analyze the projection images and calculate nine geometric parameters for each projection. The Trilogy was characterized five times over one year, while the SynergyS was characterized four times and the Vero once. Over 6500 individual projections were acquired and analyzed. Quantitative geometric parameters of both MV and kV imaging systems, as well as the isocenter consistency of the imaging systems, were successfully evaluated.
A geometric tool has been successfully implemented for calibration and QA of integrated kV and MV across a variety of radiotherapy platforms. X-ray source angle deviations up to 0.8 degrees, and detector center offsets up to 3 mm, were observed for three linacs, with the exception of the Vero, for which a significant center offset of one kV detector (prior to machine commissioning) was observed. In contrast, the gimbal-based MV source positioning of the Vero demonstrated differences between observed and expected source positions of less than 0.2 mm, both with and without gimbal rotation.
This initial application of this geometric QA tool shows promise as a universal, independent tool for quantitative evaluation of geometric accuracies of both MV and integrated kV imaging systems across a range of platforms. It provides nine geometric parameters of any imaging system at every gantry angle as well as the isocenter coincidence of the MV and kV image systems.

0 Bookmarks
 · 
71 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Electronic portal imaging devices (EPIDs) have been studied and used for pretreatment and in-vivo dosimetry applications for many years. The application of EPIDs for dosimetry in arc treatments requires accurate characterization of the mechanical sag of the EPID and gantry during rotation. Several studies have investigated the effects of gravity on the sag of these systems but each have limitations. In this study, an easy experiment setup and accurate algorithm have been introduced to characterize and correct for the effect of EPID and gantry sag during arc delivery. Three metallic ball bearings were used as markers in the beam: two of them fixed to the gantry head and the third positioned at the isocenter. EPID images were acquired during a 360° gantry rotation in cine imaging mode. The markers were tracked in EPID images and a robust in-house developed MATLAB code was used to analyse the images and find the EPID sag in three directions as well as the EPID + gantry sag by comparison to the reference gantry zero image. The algorithm results were then tested against independent methods. The method was applied to compare the effect in clockwise and counter clockwise gantry rotations and different source-to-detector distances (SDDs). The results were monitored for one linear accelerator over a course of 15 months and six other linear-accelerators from two treatment centers were also investigated using this method. The generalized shift patterns were derived from the data and used in an image registration algorithm to correct for the effect of the mechanical sag in the system. The Gamma evaluation (3%, 3 mm) technique was used to investigate the improvement in alignment of cine EPID images of a fixed field, by comparing both individual images and the sum of images in a series with the reference gantry zero image. The mechanical sag during gantry rotation was dependent on the gantry angle and was larger in the in-plane direction, although the patterns were not identical for various linear-accelerators. The reproducibility of measurements was within 0.2 mm over a period of 15 months. The direction of gantry rotation and SDD did not affect the results by more than 0.3 mm. Results of independent tests agreed with the algorithm within the accuracy of the measurement tools. When comparing summed images, the percentage of points with Gamma index <1 increased from 85.4% to 94.1% after correcting for the EPID sag, and to 99.3% after correction for gantry + EPID sag. The measurement method and algorithms introduced in this study use cine-images, are highly accurate, simple, fast, and reproducible. It tests all gantry angles and provides a suitable automatic analysis and correction tool to improve EPID dosimetry and perform comprehensive linac QA for arc treatments.
    Medical Physics 02/2012; 39(2):623-35. · 2.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To assess the accuracy and precision of cone-beam computed tomography (CBCT)-guided intensity modulated radiation therapy (IMRT). A 7-field intensity modulated radiation therapy plan was constructed for an anthropomorphic head phantom loaded with a custom cassette containing radiochromic film. The phantom was positioned on the treatment table at 9 locations: 1 "correct" position and 8 "misaligned" positions along 3 orthogonal axes. A commercial kilovoltage cone-beam computed tomography (kV-CBCT) system (VolumeView, Elekta AB, Stockholm, Sweden) was then used to align the phantom prior to plan delivery. The treatment plan was delivered using the radiation therapy delivery system (Infinity; Elekta AB) 3 times for each of the 9 positions, allowing film measurement of the delivered dose distribution in 3 orthogonal planes. Comparison of the planned and delivered dose profiles along the major axes provided an estimate of the accuracy and precision of CBCT-guided IMRT. On average, targeting accuracy was found to be within 1 mm in all 3 major anatomic planes. Over all 54 measured dose profiles, the means and standard errors of the displacement of the center of the field between the measured and calculated profiles for each of the right-left, anterior-posterior, and superior-inferior axes were +0.08 ± 0.07 mm, +0.60 ± 0.08 mm, and +0.78 ± 0.16 mm, respectively. Agreement between planned and measured 80% profiles was less than 0.4 mm on either side along the right-left axis. A systematic shift of the measured profile of slightly less than 1 mm in anterior and superior directions was noted along the anterior-posterior and superior-inferior axes, respectively. Submillimeter targeting accuracy can be achieved using a commercial kV-CBCT IGRT system.
    Practical radiation oncology. 01/2013; 4(1):e67-73.