Recombination rates in admixed individuals identified by ancestry-based inference

Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA.
Nature Genetics (Impact Factor: 29.65). 07/2011; 43(9):847-53. DOI: 10.1038/ng.894
Source: PubMed

ABSTRACT Studies of recombination and how it varies depend crucially on accurate recombination maps. We propose a new approach for constructing high-resolution maps of relative recombination rates based on the observation of ancestry switch points among admixed individuals. We show the utility of this approach using simulations and by applying it to SNP genotype data from a sample of 2,565 African Americans and 299 African Caribbeans and detecting several hundred thousand recombination events. Comparison of the inferred map with high-resolution maps from non-admixed populations provides evidence of fine-scale differentiation in recombination rates between populations. Overall, the admixed map is well predicted by the average proportion of admixture and the recombination rate estimates from the source populations. The exceptions to this are in areas surrounding known large chromosomal structural variants, specifically inversions. These results suggest that outside of structurally variable regions, admixture does not substantially disrupt the factors controlling recombination rates in humans.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pseudoautosomal region (PAR) is a short region of homology between the mammalian X and Y chromosomes, which has undergone rapid evolution. A crossover in the PAR is essential for the proper disjunction of X and Y chromosomes in male meiosis, and PAR deletion results in male sterility. This leads the human PAR with the obligatory crossover, PAR1, to having an exceptionally high male crossover rate, which is 17-fold higher than the genome-wide average. However, the mechanism by which this obligatory crossover occurs remains unknown, as does the fine-scale positioning of crossovers across this region. Recent research in mice has suggested that crossovers in PAR may be mediated independently of the protein PRDM9, which localises virtually all crossovers in the autosomes. To investigate recombination in this region, we construct the most fine-scale genetic map containing directly observed crossovers to date using African-American pedigrees. We leverage recombination rates inferred from the breakdown of linkage disequilibrium in human populations and investigate the signatures of DNA evolution due to recombination. Further, we identify direct PRDM9 binding sites using ChIP-seq in human cells. Using these independent lines of evidence, we show that, in contrast with mouse, PRDM9 does localise peaks of recombination in the human PAR1. We find that recombination is a far more rapid and intense driver of sequence evolution in PAR1 than it is on the autosomes. We also show that PAR1 hotspot activities differ significantly among human populations. Finally, we find evidence that PAR1 hotspot positions have changed between human and chimpanzee, with no evidence of sharing among the hottest hotspots. We anticipate that the genetic maps built and validated in this work will aid research on this vital and fascinating region of the genome.
    PLoS Genetics 07/2014; 10(7):e1004503. DOI:10.1371/journal.pgen.1004503 · 8.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gene conversion results in the nonreciprocal transfer of genetic information between two recombining sequences, and there is evidence that this process is biased toward G and C alleles. However, the strength of GC-biased gene conversion (gBGC) in human populations and its effects on hereditary disease have yet to be assessed on a genomic scale. Using high-coverage whole-genome sequences of African hunter-gatherers, agricultural populations, and primate outgroups, we quantified the effects of GC-biased gene conversion on population genomic data sets. We find that genetic distances (FST and population branch statistics) are modified by gBGC. In addition, the site frequency spectrum is left-shifted when ancestral alleles are favored by gBGC and right-shifted when derived alleles are favored by gBGC. Allele frequency shifts due to gBGC mimic the effects of natural selection. As expected, these effects are strongest in high-recombination regions of the human genome. By comparing the relative rates of fixation of unbiased and biased sites, the strength of gene conversion was estimated to be on the order of Nb ≈ 0.05 to 0.09. We also find that derived alleles favored by gBGC are much more likely to be homozygous than derived alleles at unbiased SNPs (+42.2% to 62.8%). This results in a curse of the converted, whereby gBGC causes substantial increases in hereditary disease risks. Taken together, our findings reveal that GC-biased gene conversion has important population genetic and public health implications.
    The American Journal of Human Genetics 10/2014; 95(4):408-20. DOI:10.1016/j.ajhg.2014.09.008 · 10.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ancestry analysis from genetic data plays a critical role in studies of human disease and evolution. Recent work has introduced explicit models for the geographic distribution of genetic variation and has shown that such explicit models yield superior accuracy in ancestry inference over non-model-based methods. Here we extend such work to introduce a method that models admixture between ancestors from multiple sources across a geographic continuum. We devise efficient algorithms based on hidden Markov models to localize on a map the recent ancestors (e.g. grandparents) of admixed individuals, joint with assigning ancestry at each locus in the genome. We validate our methods using empirical data from individuals with mixed European ancestry from the POPRES study and show that our approach is able to localize their recent ancestors within an average of 470Km of the reported locations of their grandparents. Furthermore, simulations from real POPRES genotype data show that our method attains high accuracy in localizing recent ancestors of admixed individuals in Europe (an average of 550Km from their true location for localization of 2 ancestries in Europe, 4 generations ago). We explore the limits of ancestry localization under our approach and find that performance decreases as the number of distinct ancestries and generations since admixture increases. Finally, we build a map of expected localization accuracy across admixed individuals according to the location of origin within Europe of their ancestors.
    G3-Genes Genomes Genetics 11/2014; 4(12). DOI:10.1534/g3.114.014274 · 2.51 Impact Factor

Full-text (2 Sources)

Available from
May 31, 2014