Pathogenic old world hantaviruses infect renal glomerular and tubular cells and induce disassembling of cell-to-cell contacts.

Department of Nephrology, University of Heidelberg, Heidelberg, Germany.
Journal of Virology (Impact Factor: 4.65). 07/2011; 85(19):9811-23. DOI: 10.1128/JVI.00568-11
Source: PubMed

ABSTRACT Viral hemorrhagic fevers are characterized by enhanced permeability. One of the most affected target organs of hantavirus-induced hemorrhagic fever with renal syndrome is the kidney, and an infection often results in acute renal failure. To study the underlying cellular effects leading to kidney dysfunction, we infected human renal cell types in vitro that are critical for the barrier functions of the kidney, and we examined kidney biopsy specimens obtained from hantavirus-infected patients. We analyzed the infection and pathogenic effects in tubular epithelial and glomerular endothelial renal cells and in podocytes. Both epithelial and endothelial cells and podocytes were susceptible to hantavirus infection in vitro. The infection disturbed the structure and integrity of cell-to-cell contacts, as demonstrated by redistribution and reduction of the tight junction protein ZO-1 and the decrease in the transepithelial resistance in infected epithelial monolayers. An analysis of renal biopsy specimens from hantavirus-infected patients revealed that the expression and the localization of the tight junction protein ZO-1 were altered compared to renal biopsy specimens from noninfected individuals. Both tubular and glomerular cells were affected by the infection. Furthermore, the decrease in glomerular ZO-1 correlates with disease severity induced by glomerular dysfunction. The finding that different renal cell types are susceptible to hantaviral infection and the fact that infection results in the breakdown of cell-to-cell contacts provide useful insights in hantaviral pathogenesis.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human infection with Puumala virus (PUUV), the most common hantavirus in Central Europe, causes nephropathia epidemica (NE), a disease characterized by acute kidney injury and thrombocytopenia. To determine the clinical phenotype of hantavirus-infected patients and their long-term outcome and humoral immunity to PUUV, we conducted a cross-sectional prospective survey of 456 patients in Germany with clinically and serologically confirmed hantavirus-associated NE during 2001-2012. Prominent clinical findings during acute NE were fever and back/limb pain, and 88% of the patients had acute kidney injury. At follow-up (7-35 mo), all patients had detectable hantavirus-specific IgG; 8.5% had persistent IgM; 25% had hematuria; 23% had hypertension (new diagnosis for 67%); and 7% had proteinuria. NE-associated hypertension and proteinuria do not appear to have long-term consequences, but NE-associated hematuria may. All patients in this study had hantavirus-specific IgG up to years after the infection.
    Emerging infectious diseases 01/2015; 21(1). DOI:10.3201/eid2101.140861 · 7.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endothelial activation and dysfunction play a central role in the pathogenesis of sepsis and viral hemorrhagic fevers. Hantaviral disease is a viral hemorrhagic fever and is characterized by capillary dysfunction, although the underlying mechanisms for hantaviral disease are not fully elucidated. The temporal course of endothelial activation and repair were analyzed during Puumala hantavirus infection and associated with disease outcome and a marker for hypoxia, insulin-like growth factor binding protein 1 (IGFBP-1). The following endothelial activation markers were studied: endothelial glycocalyx degradation (syndecan-1) and leukocyte adhesion molecules (soluble vascular cellular adhesion molecule 1, intercellular adhesion molecule 1, and endothelial selectin). Cytokines associated with vascular repair were also analyzed (vascular endothelial growth factor, erythropoietin, angiopoietin, and stromal cell-derived factor 1). Most of the markers we studied were highest during the earliest phase of hantaviral disease and associated with clinical and laboratory surrogate markers for disease outcome. In particular, the marker for glycocalyx degradation, syndecan-1, was significantly associated with levels of thrombocytes, albumin, IGFBP-1, decreased blood pressure, and disease severity. Hantaviral disease outcome was associated with endothelial dysfunction. Consequently, the endothelium warrants further investigation when designing future medical interventions.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hantavirus, a genus of rodent- and insectivore-borne viruses in the family Bunyaviridae, is a group of emerging zoonotic pathogens. Hantaviruses cause hemorrhagic fever with renal syndrome and hantavirus cardiopulmonary syndrome in man, often with severe consequences. Vascular leakage is evident in severe hantavirus infections, and increased permeability contributes to the pathogenesis. This review summarizes the current knowledge on hantavirus interactions with hematopoietic and endothelial cells, and their effects on the increased vascular permeability.
    Frontiers in Microbiology 12/2014; 5:727. DOI:10.3389/fmicb.2014.00727 · 3.94 Impact Factor


Available from