Article

The early life social environment and DNA methylation: DNA methylation mediating the long-term impact of social environments early in life.

Department of Pharmacology and Therapeutics, McGill University Montreal CA, USA.
Epigenetics: official journal of the DNA Methylation Society (Impact Factor: 5.11). 08/2011; 6(8):971-8. DOI: 10.4161/epi.6.8.16793
Source: PubMed

ABSTRACT Although epidemiological data provides evidence that there is an interaction between genetics (nature) and the social and physical environments (nurture) in human development; the main open question remains the mechanism. The pattern of distribution of methyl groups in DNA is different from cell-type to cell type and is conferring cell specific identity on DNA during cellular differentiation and organogenesis. This is an innate and highly programmed process. However, recent data suggests that DNA methylation is not only involved in cellular differentiation but that it is also involved in modulation of genome function in response to signals from the physical, biological and social environments. We propose that modulation of DNA methylation in response to environmental cues early in life serves as a mechanism of life-long genome "adaptation" that molecularly embeds the early experiences of a child ("nurture") in the genome ("nature"). There is an emerging line of data supporting this hypothesis in rodents, non-human primates and humans that will be reviewed here. However, several critical questions remain including the identification of mechanisms that transmit the signals from the social environment to the DNA methylation/demethylation enzymes.

1 Bookmark
 · 
82 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain development in mammals is long lasting. It begins early during embryonic growth and is finalized in early adulthood. This progression represents a delicate choreography of molecular, cellular, and physiological processes initiated and directed by the fetal genotype in close interaction with environment. Not surprisingly, most aberrations in brain functioning including intellectual disability (ID) are attributed to either gene(s), or environment or the interaction of the two. The ensuing complexity has made the assessment of this choreography, ever challenging. A model to assess this complexity has used a mouse model (C57BL/6J or B6) that is subjected to prenatal alcohol exposure. The resulting pups show learning and memory deficits similar to patients with fetal alcohol spectrum disorder (FASD), which is associated with life-long changes in gene expression. Interestingly, this change in gene expression underlies epigenetic processes including DNA methylation and miRNAs. This paradigm is applicable to ethanol exposure at different developmental times (binge at trimesters 1, 2, and 3 as well as continuous preference drinking (70%) of 10% alcohol by B6 females during pregnancy). The exposure leads to life-long changes in neural epigenetic marks, gene expression, and a variety of defects in neurodevelopment and CNS function. We argue that this cascade may be reversed postnatally via drugs, chemicals, and environment including maternal care. Such conclusions are supported by two sets of results. First, antipsychotic drugs that are used to treat ID including psychosis function via changes in DNA methylation, a major epigenetic mark. Second, post-natal environment may improve (with enriched environments) or worsen (with negative and maternal separation stress) the cognitive ability of pups that were prenatally exposed to ethanol as well as their matched controls. In this review, we will discuss operational epigenetic mechanisms involved in the development of intellectual ability/disability in response to alcohol during prenatal or post-natal development. In doing so, we will explore the potential of epigenetic manipulation in the treatment of FASD and related disorders implicated in ID.
    Frontiers in Pediatrics 08/2014; 2:90.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to discern whether a relation between biochemical parameters, sonography and musculoskeletal data exists in cases of hyperthyroidism and whether they are modifiable through supplementation with selenomethionine and magnesium citrate as well as by acupuncture and manual medicine methods.ResultsA direct correlation between whole blood selenium and serum magnesium was found in subjects without thyroid disease and in menopausal women while it was reversed in cases of thyroid diseases as well as in patients with depression, infection, and in infertile women. Vascularization indices were elevated in cases of newly diagnosed benign thyroid diseases. Musculoskeletal changes i.e. lateral tension and idiopathic moving toes, as well as situations of physical and psychological stress and minor trauma and infection led to an increase of vascularization. Magnesium levels correlated negatively with these two conditions. The supplementation brought a reduction of the vascularization indices and reduced the incidence of idiopathic moving toes. Treatment of lateral tension required manual medicine methods and acupuncture (gastrocnemius). A small subgroup of patients showed a further reduction of hyper-vascularization after receiving coenzyme Q10.Conclusions We interpret the elevated thyroid vascularization and low magnesium levels as signs of an inflammatory process related to the musculoskeletal changes. Improvement of thyroid function and morphology can be achieved after correcting the influence of stressors together with the supplementation regime. We hypothesize that the central biochemical event in thyroid disease is that of an acquired, altered mitochondrial function due to deficiency of magnesium, selenium, and coenzyme Q10.
    BBA Clinical. 11/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lower respiratory tract infections (LRTIs) are a major cause of morbidity in children. DNA methylation provides a mechanism for transmitting environmental effects on the genome, but its potential role in LRTIs is not well studied. We investigated the methylation pattern of an enhancer region of the immune effector gene perforin-1 (PRF1), which encodes a cytolytic molecule of cytotoxic T lymphocytes (CTLs) and natural killer cells (NK), in cord blood DNA of children recruited in a German birth cohort in association with LRTIs in the first year of life.Pyrosequencing was used to determine the methylation levels of target cytosine-phosphate-guanines (CpGs) in a 2-stage case-control design. Cases were identified as children who developed ≥2 episodes of physician-recorded LRTIs during the first year of life and controls as children who had none. Discovery (n = 87) and replication (n = 90) sets were arranged in trios of 1 case and 2 controls matched for sex and season of birth.Logistic regression analysis revealed higher levels of methylation at a CpG that corresponds to a signal transducer and activator of transcription 5 (STAT5) responsive enhancer in the discovery (odds ratio [OR] per 1% methylation difference 1.24, 95% confidence interval [CI] 1.03-1.50) and replication (OR per 1% methylation difference 1.25, 95% CI 1.04-1.50) sets. Adjustment for having siblings <5 years old in the discovery and replication sets produced ORs of 1.19 (95% CI 0.98-1.45) and 1.25 (95% CI 1.04-1.50), respectively. Adjustment for gestational age in the replication set had no influence on the results. Methylation levels at adjacent CpGs varied with maternal age, smoking, education, and having siblings <5 years old.Our data support an association between cord blood PRF1 enhancer methylation patterns and subsequent risk of LRTIs in infants. Methylation levels at specific CpGs of the PRF1 enhancer varied according to maternal and family environmental factors suggesting a role for DNA methylation in mediating environmental influences on gene function.
    Medicine. 01/2015; 94(1):e332.

Preview

Download
0 Downloads
Available from