Arrested oocyst maturation in Plasmodium parasites lacking type II NADH:ubiquinone dehydrogenase.

Parasitology Unit, Max Planck Institute for Infection Biology, 10117 Berlin, Germany.
Journal of Biological Chemistry (Impact Factor: 4.6). 07/2011; 286(37):32661-71. DOI: 10.1074/jbc.M111.269399
Source: PubMed

ABSTRACT The Plasmodium mitochondrial electron transport chain has received considerable attention as a potential target for new antimalarial drugs. Atovaquone, a potent inhibitor of Plasmodium cytochrome bc(1), in combination with proguanil is recommended for chemoprophylaxis and treatment of malaria. The type II NADH:ubiquinone oxidoreductase (NDH2) is considered an attractive drug target, as its inhibition is thought to lead to the arrest of the mitochondrial electron transport chain and, as a consequence, pyrimidine biosynthesis, an essential pathway for the parasite. Using the rodent malaria parasite Plasmodium berghei as an in vivo infection model, we studied the role of NDH2 during Plasmodium life cycle progression. NDH2 can be deleted by targeted gene disruption and, thus, is dispensable for the pathogenic asexual blood stages, disproving the candidacy for an anti-malarial drug target. After transmission to the insect vector, NDH2-deficient ookinetes display an intact mitochondrial membrane potential. However, ndh2(-) parasites fail to develop into mature oocysts in the mosquito midgut. We propose that Plasmodium blood stage parasites rely on glycolysis as the main ATP generating process, whereas in the invertebrate vector, a glucose-deprived environment, the malaria parasite is dependent on an intact mitochondrial respiratory chain.

Download full-text


Available from: Kai Matuschewski, Apr 30, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The rotary nanomotor ATP synthase is a central player in the bioenergetics of most organisms. Yet the role of ATP synthase in malaria parasites has remained unclear, as blood stages of Plasmodium falciparum appear to derive ATP largely through glycolysis. Also, genes for essential subunits of the F(O) sector of the complex could not be detected in the parasite genomes. Here, we have used molecular genetic and immunological tools to investigate the localization, complex formation, and functional significance of predicted ATP synthase subunits in P. falciparum. We generated transgenic P. falciparum lines expressing seven epitope-tagged canonical ATP synthase subunits, revealing localization of all but one of the subunits to the mitochondrion. Blue native gel electrophoresis of P. falciparum mitochondrial membranes suggested the molecular mass of the ATP synthase complex to be greater than 1 million daltons. This size is consistent with the complex being assembled as a dimer in a manner similar to the complexes observed in other eukaryotic organisms. This observation also suggests the presence of previously unknown subunits in addition to the canonical subunits in P. falciparum ATP synthase complex. Our attempts to disrupt genes encoding β and γ subunits were unsuccessful, suggesting an essential role played by the ATP synthase complex in blood stages of P. falciparum. These studies suggest that, despite some unconventional features and its minimal contribution to ATP synthesis, P. falciparum ATP synthase is localized to the parasite mitochondrion, assembled as a large dimeric complex, and is likely essential for parasite survival.
    Journal of Biological Chemistry 12/2011; 286(48):41312-22. DOI:10.1074/jbc.M111.290973 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Malaria remains a disease of devastating global impact, killing more than 800,000 people every year-the vast majority being children under the age of 5. While effective therapies are available, if malaria is to be eradicated a broader range of small molecule therapeutics that are able to target the liver and the transmissible sexual stages are required. These new medicines are needed both to meet the challenge of malaria eradication and to circumvent resistance. Little is known about the wider stage-specific activities of current antimalarials that were primarily designed to alleviate symptoms of malaria in the blood stage. To overcome this critical gap, we developed assays to measure activity of antimalarials against all life stages of malaria parasites, using a diverse set of human and nonhuman parasite species, including male gamete production (exflagellation) in Plasmodium falciparum, ookinete development in P. berghei, oocyst development in P. berghei and P. falciparum, and the liver stage of P. yoelii. We then compared 50 current and experimental antimalarials in these assays. We show that endoperoxides such as OZ439, a stable synthetic molecule currently in clinical phase IIa trials, are strong inhibitors of gametocyte maturation/gamete formation and impact sporogony; lumefantrine impairs development in the vector; and NPC-1161B, a new 8-aminoquinoline, inhibits sporogony. These data enable objective comparisons of the strengths and weaknesses of each chemical class at targeting each stage of the lifecycle. Noting that the activities of many compounds lie within achievable blood concentrations, these results offer an invaluable guide to decisions regarding which drugs to combine in the next-generation of antimalarial drugs. This study might reveal the potential of life-cycle-wide analyses of drugs for other pathogens with complex life cycles.
    PLoS Medicine 02/2012; 9(2):e1001169. DOI:10.1371/journal.pmed.1001169 · 14.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heme is an essential prosthetic group for most life on Earth. It functions in numerous cellular redox reactions, including in antioxidant defenses and at several stages of the electron transport chain in prokaryotes and eukaryotic mitochondria. Heme also functions as a sensor and transport molecule for gases such as oxygen. Heme is a complex organic molecule and can only be synthesized through a multienzyme pathway from simpler precursors. Most free-living organisms synthesize their own heme by a broadly conserved metabolic pathway. Parasites are adept at scavenging molecules from their hosts, and heme is no exception. RECENT ADVANCES: In this review we examine recent advances in understanding heme usage and acquisition in Apicomplexa, a group of parasites that include the causative agents of malaria, toxoplasmosis, and several major parasites of livestock. Heme is critical to the survival of Apicomplexa, although the functions of heme in these organisms remain poorly understood. Some Apicomplexa likely scavenge heme from their host organisms, while others retain the ability to synthesize heme. Surprisingly, some Apicomplexa may be able to both synthesize and scavenge heme. Several Apicomplexa live in intracellular environments that contain high levels of heme. Since heme is toxic at high concentrations, parasites must carefully regulate intracellular heme levels and develop mechanisms to detoxify excess heme. Indeed, drugs interfering with heme detoxification serve as major antimalarials. Understanding heme requirements and regulation in apicomplexan parasites promises to reveal multiple targets for much-needed therapeutic intervention against these parasites.
    Antioxidants & Redox Signaling 02/2012; 17(4):634-56. DOI:10.1089/ars.2012.4539 · 7.67 Impact Factor