Obesity and Coronary Artery Calcium in Diabetes: The Coronary Artery Calcification in Type 1 Diabetes (CACTI) Study

Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado 80045, USA.
Diabetes Technology &amp Therapeutics (Impact Factor: 2.11). 07/2011; 13(10):991-6. DOI: 10.1089/dia.2011.0046
Source: PubMed


The aim was to examine whether excess weight is associated with coronary artery calcium (CAC), independent of metabolic parameters in adults with type 1 diabetes (T1D).
Subjects between 19 and 56 years of age with T1D (n=621) from the Coronary Artery Calcification in Type 1 Diabetes study were classified as abnormal on four metabolic parameters: blood pressure ≥130/85 mm Hg or on antihypertensive treatment; high-density lipoprotein-cholesterol of <40 mg/dL for men or <50 mg/dL for women; triglycerides of ≥150 mg/dL; or C-reactive protein of ≥3 μg/mL. Study participants with two or more abnormal parameters were classified as metabolically abnormal. Weight categories by body mass index were normal (<25 kg/m(2)), overweight (25 to <30 kg/m(2)), and obese (≥30 kg/m(2)). CAC was measured at two visits 6.0±0.5 years apart. Progression of CAC was defined as an increase in square root transformed CAC volume of ≥2.5 mm(3) or development of clinical coronary artery disease.
Among subjects with T1D, 48% of normal, 61% of overweight, and 73% of obese participants were classified as metabolically abnormal (P<0.0001). Overweight and obesity were independently associated with presence of CAC, independent of presence of metabolically abnormal. Obesity but not overweight was associated with CAC progression, independent of the other cardiovascular risk factors.
Although obesity is known to increase cardiovascular disease risk through inducing metabolic abnormalities such as dyslipidemia, hypertension, and inflammation, it is also a strong predictor of subclinical atherosclerosis progression in adults with T1D independent of these factors.

Download full-text


Available from: Gregory Kinney, Jul 17, 2014
17 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: The incidence of both type 1 and type 2 diabetes is increasing globally, most likely explained by environmental changes, such as changing exposures to foods, viruses, and toxins, and by increasing obesity. While cardiovascular disease (CVD) mortality has been declining recently, this global epidemic of diabetes threatens to stall this trend. CVD is the leading cause of death in both type 1 and type 2 diabetes, with at least a two- to fourfold increased risk in patients with diabetes. In this review, the risk factors for CVD are discussed in the context of type 1 and type 2 diabetes. While traditional risk factors such as dyslipidemia, hypertension, and obesity are greater in type 2 patients than in type 1 diabetes, they explain only about half of the increased CVD risk. The role for diabetes-specific risk factors, including hyperglycemia and kidney complications, is discussed in the context of new study findings.
    Current Diabetes Reports 03/2013; 13(3). DOI:10.1007/s11892-013-0380-1 · 3.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiovascular disease (CVD) remains the leading cause of death among adults with diabetes, and CVD prevention remains a major challenge. Coronary artery calcium (CAC) score measured by electron beam tomography (EBT) or multi-slice detector computed tomography correlates closely with plaque burden and coronary angiography, and predicts coronary events independently of other risk factors. Further, progression of CAC over several years has been shown to predict increased mortality. Coronary calcification is an active process strongly associated with atherosclerotic plaque evolution and is an accepted surrogate endpoint in studies of patients with diabetes older than 30. In this review, recent findings regarding the mechanisms and implications of vascular calcification in diabetes will be discussed.
    Current Diabetes Reports 03/2013; 13(3). DOI:10.1007/s11892-013-0379-7 · 3.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE Diabetic nephropathy (DN) is a major cause of mortality in type 1 diabetes. Reduced insulin sensitivity is a well-documented component of type 1 diabetes. We hypothesized that baseline insulin sensitivity would predict development of DN over 6 years.RESEARCH DESIGN AND METHODS We assessed the relationship between insulin sensitivity at baseline and development of early phenotypes of DN-microalbuminuria (albumin-creatinine ratio [ACR] ≥30 mg/g) and rapid renal function decline (glomerular filtration rate [GFR] loss >3 mL/min/1.73 m(2) per year)-with three Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations over 6 years. Subjects with diabetes (n = 449) and without diabetes (n = 565) in the Coronary Artery Calcification in Type 1 Diabetes study had an estimated insulin sensitivity index (ISI) at baseline and 6-year follow-up.RESULTSThe ISI was lower in subjects with diabetes than in those without diabetes (P < 0.0001). A higher ISI at baseline predicted a lower odds of developing an ACR ≥30 mg/g (odds ratio 0.65 [95% CI 0.49-0.85], P = 0.003) univariately and after adjusting for HbA1c (0.69 [0.51-0.93], P = 0.01). A higher ISI at baseline conferred protection from a rapid decline of GFR as assessed by CKD-EPI cystatin C (0.77 [0.64-0.92], P = 0.004) and remained significant after adjusting for HbA1c and age (0.80 [0.67-0.97], P = 0.02). We found no relation between ISI and rapid GFR decline estimated by CKD-EPI creatinine (P = 0.38) or CKD-EPI combined cystatin C and creatinine (P = 0.50).CONCLUSIONS Over 6 years, a higher ISI independently predicts a lower odds of developing microalbuminuria and rapid GFR decline as estimated with cystatin C, suggesting a relationship between insulin sensitivity and early phenotypes of DN.
    Diabetes care 09/2013; 36(11). DOI:10.2337/dc13-0631 · 8.42 Impact Factor
Show more