Ultrashort Echo Time MRI of Cortical Bone at 7 Tesla Field Strength: A Feasibility Study

Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.
Journal of Magnetic Resonance Imaging (Impact Factor: 3.21). 09/2011; 34(3):691-5. DOI: 10.1002/jmri.22648
Source: PubMed


To implement and examine the feasibility of a three-dimensional (3D) ultrashort TE (UTE) sequence on a 7 Tesla (T) clinical MR scanner in comparison with 3T MRI at high isotropic resolution.
Using an in-house built saddle coil at both field strengths we have imaged mid-diaphysial sections of five fresh cadaveric specimens of the distal tibia. An additional in vivo scan was performed at 7 Tesla using a quadrature knee coil.
Using the same type of saddle coil at both field strengths, a significant increase in SNR at 7T compared with 3T (factor 1.7) was found. Significantly shorter T2* values were found at the higher field strength (T2* = 552.2 ± 126 μs at 7T versus T2* = 1163 ± 391 μs at 3T).
UHF MRI at 7T has great potential for imaging tissues with short T2.

Download full-text


Available from: Sharmila Majumdar,
  • [Show abstract] [Hide abstract]
    ABSTRACT: The noninvasive quantification of peripheral compartment-specific bone microarchitecture is feasible with high-resolution peripheral quantitative computed tomography (HR-pQCT) and high-resolution magnetic resonance imaging (HR-MRI). In addition to classic morphometric indices, both techniques provide a suitable basis for virtual biomechanical testing using finite element (FE) analyses. Methodical limitations, morphometric parameter definition, and motion artifacts have to be considered to achieve optimal data interpretation from imaging studies. With increasing availability of in vivo high-resolution bone imaging techniques, special emphasis should be put on quality control including multicenter, cross-site validations. Importantly, conclusions from interventional studies investigating the effects of antiosteoporotic drugs on bone microarchitecture should be drawn with care, ideally involving imaging scientists, translational researchers, and clinicians.
    Annals of the New York Academy of Sciences 12/2011; 1240(1):77-87. DOI:10.1111/j.1749-6632.2011.06282.x · 4.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Advances in modern magnetic resonance imaging (MRI) pulse sequences have enabled clinically practical cortical bone imaging. Human cortical bone is known to contain a distribution of T(1) and T(2) components attributed to bound and pore water, although clinical imaging approaches have yet to discriminate bound from pore water based on their relaxation properties. Herein, two clinically compatible MRI strategies are proposed for selectively imaging either bound or pore water by utilizing differences in their T(1) s and T(2) s. The strategies are validated in a population of ex vivo human cortical bones, and estimates obtained for bound and pore water are compared to bone mechanical properties. Results show that the two MRI strategies provide good estimates of bound and pore water that correlate to bone mechanical properties. As such, the strategies for bound and pore water discrimination shown herein should provide diagnostically useful tools for assessing bone fracture risk, once applied to clinical MRI. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc.
    Magnetic Resonance in Medicine 12/2012; 68(6). DOI:10.1002/mrm.24186 · 3.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: To evaluate the status of articular cartilage and bone in an equine model of spontaneous repair by using the sweep imaging with Fourier transform (SWIFT) magnetic resonance (MR) imaging technique. Materials and methods: Experiments were approved by the Utrecht University Animal Ethics Committee. Six-millimeter-diameter chondral (n = 5) and osteochondral (n = 5, 3-4 mm deep into subchondral bone) defects were created in the intercarpal joints of seven 2-year-old horses and examined with SWIFT at 9.4 T after spontaneous healing for 12 months. Conventional T2 maps and gradient-echo images were obtained for comparison, and histologic assessment of cartilage and micro-computed tomography (CT) of bone were performed for reference. Signal-to-noise ratio (SNR) analysis was performed, and a radiologist evaluated the MR images. Structural bone parameters were derived from SWIFT and micro-CT datasets. Significance of differences was investigated with the Wilcoxon signed rank test and Pearson correlation analysis. Results: SWIFT was able to depict the different outcomes of spontaneous healing of focal chondral versus osteochondral defects. SWIFT produced constant signal intensity throughout cartilage, whereas T2 mapping showed elevated T2 values (P = .06) in repair tissue (mean T2 in superficial region of interest in an osteochondral lesion = 50.0 msec ± 10.2) in comparison to adjacent intact cartilage (mean T2 = 32.7 msec ± 4.2). The relative SNR in the subchondral plate with SWIFT (0.91) was more than four times higher than that with conventional fast spin-echo (0.12) and gradient-echo (0.19) MR imaging. The correlation between bone volume-to-tissue volume fractions determined with SWIFT and micro-CT was significant (r = 0.83, P < .01). Conclusion: SWIFT enabled assessment of spontaneous osteochondral repair in an equine model.
    Radiology 05/2013; 269(1). DOI:10.1148/radiol.13121433 · 6.87 Impact Factor
Show more