The Use of Imputed Values in the Meta-Analysis of Genome-Wide Association Studies

Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Genetic Epidemiology (Impact Factor: 2.95). 11/2011; 35(7):597-605. DOI: 10.1002/gepi.20608
Source: PubMed

ABSTRACT In genome-wide association studies (GWAS), it is a common practice to impute the genotypes of untyped single nucleotide polymorphism (SNP) by exploiting the linkage disequilibrium structure among SNPs. The use of imputed genotypes improves genome coverage and makes it possible to perform meta-analysis combining results from studies genotyped on different platforms. A popular way of using imputed data is the "expectation-substitution" method, which treats the imputed dosage as if it were the true genotype. In current practice, the estimates given by the expectation-substitution method are usually combined using inverse variance weighting (IVM) scheme in meta-analysis. However, the IVM is not optimal as the estimates given by the expectation-substitution method are generally biased. The optimal weight is, in fact, proportional to the inverse variance and the expected value of the effect size estimates. We show both theoretically and numerically that the bias of the estimates is very small under practical conditions of low effect sizes in GWAS. This finding validates the use of the expectation-substitution method, and shows the inverse variance is a good approximation of the optimal weight. Through simulation, we compared the power of the IVM method with several methods including the optimal weight, the regular z-score meta-analysis and a recently proposed "imputation aware" meta-analysis method (Zaitlen and Eskin [2010] Genet Epidemiol 34:537-542). Our results show that the performance of the inverse variance weight is always indistinguishable from the optimal weight and similar to or better than the other two methods.


Available from: Shuo Jiao, Jun 15, 2015
  • Source
    Dataset: ng.2505-S1
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over the last 10 years, high-density SNP arrays and DNA re-sequencing have illuminated the majority of the genotypic space for a number of organisms, including humans, maize, rice and Arabidopsis. For any researcher willing to define and score a phenotype across many individuals, Genome Wide Association Studies (GWAS) present a powerful tool to reconnect this trait back to its underlying genetics. In this review we discuss the biological and statistical considerations that underpin a successful analysis or otherwise. The relevance of biological factors including effect size, sample size, genetic heterogeneity, genomic confounding, linkage disequilibrium and spurious association, and statistical tools to account for these are presented. GWAS can offer a valuable first insight into trait architecture or candidate loci for subsequent validation.
    Plant Methods 07/2013; 9(1):29. DOI:10.1186/1746-4811-9-29 · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the large cohorts that have been used for genome-wide association studies (GWAS), it is prohibitively expensive to sequence all cohort members. A cost-effective strategy is to sequence subjects with extreme values of quantitative traits or those with specific diseases. By imputing the sequencing data from the GWAS data for the cohort members who are not selected for sequencing, one can dramatically increase the number of subjects with information on rare variants. However, ignoring the uncertainties of imputed rare variants in downstream association analysis will inflate the type I error when sequenced subjects are not a random subset of the GWAS subjects. In this article, we provide a valid and efficient approach to combining observed and imputed data on rare variants. We consider commonly used gene-level association tests, all of which are constructed from the score statistic for assessing the effects of individual variants on the trait of interest. We show that the score statistic based on the observed genotypes for sequenced subjects and the imputed genotypes for nonsequenced subjects is unbiased. We derive a robust variance estimator that reflects the true variability of the score statistic regardless of the sampling scheme and imputation quality, such that the corresponding association tests always have correct type I error. We demonstrate through extensive simulation studies that the proposed tests are substantially more powerful than the use of accurately imputed variants only and the use of sequencing data alone. We provide an application to the Women's Health Initiative. The relevant software is freely available.
    Proceedings of the National Academy of Sciences 01/2015; 112(4). DOI:10.1073/pnas.1406143112 · 9.81 Impact Factor