Sensitization of BCL-2-expressing breast tumors to chemotherapy by the BH3 mimetic ABT-737.

The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 07/2011; 109(8):2766-71. DOI: 10.1073/pnas.1104778108
Source: PubMed

ABSTRACT Overexpression of the prosurvival protein BCL-2 is common in breast cancer. Here we have explored its role as a potential therapeutic target in this disease. BCL-2, its anti-apoptotic relatives MCL-1 and BCL-XL, and the proapoptotic BH3-only ligand BIM were found to be coexpressed at relatively high levels in a substantial proportion of heterogeneous breast tumors, including clinically aggressive basal-like cancers. To determine whether the BH3 mimetic ABT-737 that neutralizes BCL-2, BCL-XL, and BCL-W had potential efficacy in targeting BCL-2-expressing basal-like triple-negative tumors, we generated a panel of primary breast tumor xenografts in immunocompromised mice and treated recipients with either ABT-737, docetaxel, or a combination. Tumor response and overall survival were significantly improved by combination therapy, but only for tumor xenografts that expressed elevated levels of BCL-2. Treatment with ABT-737 alone was ineffective, suggesting that ABT-737 sensitizes the tumor cells to docetaxel. Combination therapy was accompanied by a marked increase in apoptosis and dissociation of BIM from BCL-2. Notably, BH3 mimetics also appeared effective in BCL-2-expressing xenograft lines that harbored p53 mutations. Our findings provide in vivo evidence that BH3 mimetics can be used to sensitize primary breast tumors to chemotherapy and further suggest that elevated BCL-2 expression constitutes a predictive response marker in breast cancer.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interfering oncogenic STAT3 signaling is a promising anti-cancer strategy. We examined the efficacy and drug mechanism of an obatoclax analog SC-2001, a novel STAT3 inhibitor, in human breast cancer cells. Human breast cancer cell lines were used for in vitro studies. Apoptosis was examined by both flow cytometry and western blot. Signaling pathways were assessed by western blot. In vivo efficacy of SC-2001 was tested in xenograft nude mice. SC-2001 inhibited cell growth and induced apoptosis in association with downregulation of p-STAT3 (Tyr 705) in breast cancer cells. STAT3-regulated proteins, including Mcl-1, survivin, and cyclin D1, were repressed by SC-2001. Over-expression of STAT3 in MDA-MB-468 cells protected cells from SC-2001-induced apoptosis. Moreover, SC-2001 enhanced the expression of protein tyrosine phosphatase SHP-1, a negative regulator of STAT3. Furthermore, the enhanced SHP-1 expression, in conjunction with increased SHP-1 phosphatase activity, was mediated by upregulated transcription by RFX-1. Chromatin immunoprecipitation assay revealed that SC-2001 increased the binding capacity of RFX-1 to the SHP-1 promoter. Knockdown of either RFX-1 or SHP-1 reduced SC-2001-induced apoptosis, whereas ectopic expression of RFX-1 increased SHP-1 expression and enhanced the apoptotic effect of SC-2001. Importantly, SC-2001 suppressed tumor growth in association with enhanced RFX-1 and SHP-1 expression and p-STAT3 downregulation in MDA-MB-468 xenograft tumors. SC-2001 induced apoptosis in breast cancer cells, an effect that was mediated by RFX-1 upregulated SHP-1 expression and SHP-1-dependent STAT3 inactivation. Our study indicates targeting STAT3 signaling pathway may be a useful approach for the development of targeted agents for anti-breast cancer.
    Breast Cancer Research and Treatment 06/2014; · 4.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antimitotic agents such as microtubule inhibitors (paclitaxel) are widely used in cancer therapy while new agents blocking mitosis onset are currently in development. All these agents impose a prolonged mitotic arrest in cancer cells that relies on sustained activation of the spindle assembly checkpoint and may lead to subsequent cell death by incompletely understood molecular events. We have investigated the role played by anti-apoptotic Bcl-2 family members in the fate of mitotically arrested mammary tumor cells treated with paclitaxel, or depleted in Cdc20, the activator of the anaphase promoting complex. Under these conditions, a weak and delayed mitotic cell death occurs that is caspase- and Bax/Bak-independent. Moreover, BH3 profiling assays indicate that viable cells during mitotic arrest are primed to die by apoptosis and that Bcl-xL is required to maintain mitochondrial integrity. Consistently, Bcl-xL depletion, or treatment with its inhibitor ABT-737 (but not with the specific Bcl-2 inhibitor ABT-199), during mitotic arrest converts cell response to antimitotics to efficient caspase and Bax-dependent apoptosis. Apoptotic priming under conditions of mitotic arrest relies, at least in part, on the phosphorylation on serine 62 of Bcl-xL, which modulates its interaction with Bax and its sensitivity to ABT-737. The phospho-mimetic S62D-Bcl-xL mutant is indeed less efficient than the corresponding phospho-deficient S62A-Bcl-xL mutant in sequestrating Bax and in protecting cancer cells from mitotic cell death or yeast cells from Bax-induced growth inhibition. Our results provide a rationale for combining Bcl-xL targeting to antimitotic agents to improve clinical efficacy of antimitotic strategy in cancer therapy.
    Cell Death & Disease 01/2014; 5:e1291. · 6.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are a class of single-stranded, non-coding RNAs of about 22 nucleotides in length. Increasing evidence implicates miRNAs may function as oncogenes or tumor suppressors. Here we showed that miR-107 directly targeted MCL1 and activated ATR/Chk1 pathway to inhibit proliferation, migration and invasiveness of cervical cancer cells. Moreover, we found that MCL1 was frequently up-regulated in cervical cancer, and knockdown of MCL1 markedly inhibited cancer cell proliferation, migration and invasion, whereas ectopic expression of MCL1 significantly enhances these properties. The restoration of MCL1 expression can counteract the effect of miR-107 on the cancer cells. Together, miR-107 is a new regulator of MCL1, and both miR-107 and MCL1 play important roles in the pathogenesis of cervical cancer. We have therefore identified a mechanism for ATR/Chk1 pathway which involves an increase in miR-107 leading to a decrease in MCL1. Correspondingly, our results revealed that miR-107 affected ATR/Chk1 signalling and gene expression, and implicated miR-107 as a therapeutic target in human cervical cancer. We also demonstrated that taxol attenuated migration and invasion in cervical cancer cells by activating the miR-107, in which miR-107 play an important role in regulating the expression of MCL1. Elucidation of this discovered MCL1 was directly regulated by miR-107 will greatly enhance our understanding of the mechanisms responsible for cervical cancer and will provide an additional arm for the development of anticancer therapies.
    PLoS ONE 01/2014; 9(11):e111860. · 3.53 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014