Article

Functional analysis of environmental DNA-derived type II polyketide synthases reveals structurally diverse secondary metabolites.

Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 08/2011; 108(31):12629-34. DOI: 10.1073/pnas.1103921108
Source: PubMed

ABSTRACT A single gram of soil is predicted to contain thousands of unique bacterial species. The majority of these species remain recalcitrant to standard culture methods, prohibiting their use as sources of unique bioactive small molecules. The cloning and analysis of DNA extracted directly from environmental samples (environmental DNA, eDNA) provides a means of exploring the biosynthetic capacity of natural bacterial populations. Environmental DNA libraries contain large reservoirs of bacterial genetic diversity from which new secondary metabolite gene clusters can be systematically recovered and studied. The identification and heterologous expression of type II polyketide synthase-containing eDNA clones is reported here. Functional analysis of three soil DNA-derived polyketide synthase systems in Streptomyces albus revealed diverse metabolites belonging to well-known, rare, and previously uncharacterized structural families. The first of these systems is predicted to encode the production of the known antibiotic landomycin E. The second was found to encode the production of a metabolite with a previously uncharacterized pentacyclic ring system. The third was found to encode the production of unique KB-3346-5 derivatives, which show activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis. These results, together with those of other small-molecule-directed metagenomic studies, suggest that culture-independent approaches are capable of accessing biosynthetic diversity that has not yet been extensively explored using culture-based methods. The large-scale functional screening of eDNA clones should be a productive strategy for generating structurally previously uncharacterized chemical entities for use in future drug development efforts.

0 Bookmarks
 · 
151 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Marine microorganisms continue to be a source of structurally and biologically novel compounds with potential use in the biotechnology industry. The unique physiochemical properties of the marine environment (such as pH, pressure, temperature, osmolarity) and uncommon functional groups (such as isonitrile, dichloroimine, isocyanate, and halogenated functional groups) are frequently found in marine metabolites. These facts have resulted in the production of bioactive substances with different properties than those found in terrestrial habitats. In fact, the marine environment contains a relatively untapped reservoir of bioactivity. Recent advances in genomics, metagenomics, proteomics, combinatorial biosynthesis, synthetic biology, screening methods, expression systems, bioinformatics, and the ever increasing availability of sequenced genomes provides us with more opportunities than ever in the discovery of novel bioactive compounds and biocatalysts. The combination of these advanced techniques with traditional techniques, together with the use of dereplication strategies to eliminate known compounds, provides a powerful tool in the discovery of novel marine bioactive compounds. This review outlines and discusses the emerging strategies for the biodiscovery of these bioactive compounds.
    Marine Drugs 01/2014; 12(6):3516-59. · 3.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of culture-independent techniques and next-generation sequencing has led to a staggering rise in the number of microbiome studies over the last decade. Although it remains important to identify the taxa of microbes present in a variety of environmental samples, including the gut microbiomes of healthy and diseased individuals, the next stage of microbiome research will need to focus on uncovering the role of the microbiome rather than its mere composition. Here, we introduce techniques that go beyond identifying the taxa present within a sample and examine the biological function of the microbiome or the host-microbiome interaction.
    F1000 Biology Reports 07/2014; 6(51).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years a major worldwide problem has arisen with regard to infectious diseases caused by resistant bacteria. Resistant pathogens are related to high mortality and also to enormous healthcare costs. In this field, cultured microorganisms have been commonly focused in attempts to isolate antibiotic resistance genes or to identify antimicrobial compounds. Although this strategy has been successful in many cases, most of the microbial diversity and related antimicrobial molecules have been completely lost. As an alternative, metagenomics has been used as a reliable approach to reveal the prospective reservoir of antimicrobial compounds and antibiotic resistance genes in the uncultured microbial community that inhabits a number of environments. In this context, this review will focus on resistance genes as well as on novel antibiotics revealed by a metagenomics approach from the soil environment. Biotechnology prospects are also discussed, opening new frontiers for antibiotic development.
    Frontiers in Microbiology; 09/2014

Full-text

View
3 Downloads
Available from