Article

The reality of pervasive transcription.

Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.
PLoS Biology (Impact Factor: 11.77). 07/2011; 9(7):e1000625; discussion e1001102. DOI: 10.1371/journal.pbio.1000625
Source: PubMed

ABSTRACT Despite recent controversies, the evidence that the majority of the human genome is transcribed into RNA remains strong.

1 Follower
 · 
213 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using RNA-seq (RNA sequencing) of ribosome-depleted RNA, we have identified 1,273 lncRNAs (long non-coding RNAs) in P493-6 human B-cells. Of these, 534 are either up- or downregulated in response to MYC overexpression. An increase in MYC occupancy near their TSS (transcription start sites) was observed for MYC-responsive lncRNAs suggesting these are direct MYC targets. MYC binds to the same TSS across several cell lines, but the number of TSS bound depends on cellular MYC levels and increases with higher MYC concentrations. Despite this concordance in promoter binding, a majority of expressed lncRNAs are specific for one cell line, suggesting a determinant role of additional, possibly differentiation-specific factors in the activity of MYC-bound lncRNA promoters. A significant fraction of the lncRNA transcripts lack polyadenylation. The RNA-seq data were confirmed on eight selected lncRNAs by NRO (nuclear run-on) and RT-qPCR (quantitative reverse transcription PCR).
    Oncotarget 12/2014; 5(24):12543-54. · 6.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A paragraph from the highlights of "Transcriptomics: Throwing light on dark matter" by L. Flintoft (Nature Reviews Genetics 11, 455, 2010), says: "Reports over the past few years of extensive transcription throughout eukaryotic genomes have led to considerable excitement. However, doubts have been raised about the methods that have detected this pervasive transcription and about how much of it is functional." Since the appearance of the ENCODE project and due to follow-up work, a shift from the pervasive transcription observed from RNA-Seq data to its functional validation is gradually occurring. However, much less attention has been turned to the problem of deciphering the complexity of transcriptome data, which determines uncertainty with regard to identification, quantification and differential expression of genes and non-coding RNAs. The aim of this mini-review is to emphasize transcriptome-related problems of direct and inverse nature for which novel inference approaches are needed.
    09/2014; 11(19):123-130. DOI:10.1016/j.csbj.2014.09.004
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Laser capture microdissection (LCM) facilitates the isolation of individual cells from tissue sections, and when combined with RNA amplification techniques, it is an extremely powerful tool for examining genome-wide expression profiles in specific cell-types. LCM has been widely used to address various biological questions in both animal and plant systems, however, no attempt has been made so far to transfer LCM technology to macroalgae. Macroalgae are a collection of widespread eukaryotes living in fresh and marine water. In line with the collective effort to promote molecular investigations of macroalgal biology, here we demonstrate the feasibility of using LCM and cell-specific transcriptomics to study development of the brown alga Ectocarpus siliculosus. We describe a workflow comprising cultivation and fixation of algae on glass slides, laser microdissection, and RNA amplification. To illustrate the effectiveness of the procedure, we show qPCR data and metrics obtained from cell-specific transcriptomes generated from both upright and prostrate filaments of Ectocarpus.
    Frontiers in Plant Science 02/2015; 6(54). DOI:10.3389/fpls.2015.00054 · 3.64 Impact Factor

Full-text (2 Sources)

Download
75 Downloads
Available from
Jun 3, 2014