Article

Resistance of bulky DNA lesions to nucleotide excision repair can result from extensive aromatic lesion–base stacking interactions

Department of Chemistry, Department of Biology, New York University, New York, NY 10003, USA.
Nucleic Acids Research (Impact Factor: 8.81). 07/2011; 39(20):8752-64. DOI: 10.1093/nar/gkr537
Source: PubMed

ABSTRACT The molecular basis of resistance to nucleotide excision repair (NER) of certain bulky DNA lesions is poorly understood. To address this issue, we have studied NER in human HeLa cell extracts of two topologically distinct lesions, one derived from benzo[a]pyrene (10R-(+)-cis-anti-B[a]P-N(2)-dG), and one from the food mutagen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (C8-dG-PhIP), embedded in either full or 'deletion' duplexes (the partner nucleotide opposite the lesion is missing). All lesions adopt base-displaced intercalated conformations. Both full duplexes are thermodynamically destabilized and are excellent substrates of NER. However, the identical 10R-(+)-cis-anti-B[a]P-N(2)-dG adduct in the deletion duplex dramatically enhances the thermal stability of this duplex, and is completely resistant to NER. Molecular dynamics simulations show that B[a]P lesion-induced distortion/destabilization is compensated by stabilizing aromatic ring system-base stacking interactions. In the C8-dG-PhIP-deletion duplex, the smaller size of the aromatic ring system and the mobile phenyl ring are less stabilizing and yield moderate NER efficiency. Thus, a partner nucleotide opposite the lesion is not an absolute requirement for the successful initiation of NER. Our observations are consistent with the hypothesis that carcinogen-base stacking interactions, which contribute to the local DNA stability, can prevent the successful insertion of an XPC β-hairpin into the duplex and the normal recruitment of other downstream NER factors.

0 Followers
 · 
201 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The conformational preference of the O6-benzyl-guanine (BzG) adduct was computationally examined using nucleoside, nucleotide and DNA models, which provided critical information about the potential mutagenic consequences and toxicity of the BzG adduct in our cells. Substantial conformational flexibility of the BzG moiety, including rotation of the bulky group with respect to the base and the internal conformation of the bulk moiety, is seen in the nucleoside and nucleotide models. This large conformational flexibility suggests the conformation adopted by BzG is dependent on the local environment of the BzG adduct. Upon incorporation of the adduct into the DNA helix, the BzG conformational flexibility is maintained. The range of BzG conformations adopted in DNA likely arises due to a combination of the long and flexible (-CH2¬-) linker, the small adduct size and the lack of discrete interactions between the bulky moiety and G. Due to the conformational flexibility of the adduct, many DNA conformations are observed for BzG adducted DNA, including those not previously reported in the literature, and thus a modified nomenclature for adducted DNA conformations is presented. Furthermore, the preferred conformation of BzG adducted DNA is greatly dependent on a number of factors, including the pairing nucleotide, the discrete interactions in the helix and the solvation of the benzyl moiety. These factors in turn lead to a complicated mutagenic and toxic profile that may invoke pairing with natural C, mispairs, or deletion mutations, which is supported by previously reported experimental biochemical studies. Despite this complex mutagenic profile, pairing with C leads to the most stable helical structure, which is the first combined structural and energetic explanation for experimental studies reporting a higher rate of C incorporation than any other nucleobase upon the BzG replication.
    Chemical Research in Toxicology 06/2014; 27(7). DOI:10.1021/tx500178x · 4.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nephrotoxic food mutagen ochratoxin A (OTA) produces DNA adducts in rat kidneys, the major lesion being the C8-linked-2'-deoxyguanosine adduct (OTB-dG). Although research on other adducts stresses the importance of understanding the structure of the associated adducted DNA, site-specific incorporation of OTB-dG into DNA has yet to be attempted. The present work uses a robust computational approach to determine the conformational preferences of OTB-dG in three ionization states at three guanine positions in the NarI recognition sequence opposite cytosine. Representative adducted DNA helices were derived from over 2160 ns of simulation and ranked via free energies. For the first time, a close energetic separation between three distinct conformations is highlighted, which indicates OTA-adducted DNA likely adopts a mixture of conformations regardless of the sequence context. Nevertheless, the preferred conformation depends on the flanking bases and ionization state due to deviations in discrete local interactions at the lesion site. The structural characteristics of the lesion thus discerned have profound implications regarding its repair propensity and mutagenic outcomes, and support recent experiments suggesting the induction of double-strand breaks and deletion mutations upon OTA exposure. This combined structural and energetic characterization of the OTB-dG lesion in DNA will encourage future biochemical experiments on this potentially genotoxic lesion.
    Nucleic Acids Research 09/2014; DOI:10.1093/nar/gku821 · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genomic DNA is damaged by a variety of factors exerting an adverse effect on human health, such as environmental pollution, UV light, ionizing radiation, and toxic compounds. Air pollution with products of incomplete combustion of hydrocarbon fuels and wastes of various industries are main sources of polycyclic aromatic hydrocarbons, whose metabolites can damage DNA by forming bulky DNA adducts, which potentially lead to mutations and cancer. Nucleotide excision repair is the main pathway that eliminates these lesions in eukaryotic cells. The excision efficiency of bulky adducts depends on many factors, including the structure of a bulky substituent and the degree of DNA double helix distortion induced by a lesion. Clustered DNA lesions are the most dangerous for the cell. Several DNA repair systems cooperate to recognize and remove such lesions. The review focuses on the mechanisms that repair DNA with single and clustered bulky lesions, taking the natural carcinogen benzo[a]pyrene as an example.
    Molecular Biology 09/2013; 47(5):634-644. DOI:10.1134/S002689331305018X · 0.74 Impact Factor

Preview (2 Sources)

Download
5 Downloads
Available from