Electrophile-modified lipoic derivatives of PDC-E2 elicits anti-mitochondrial antibody reactivity

Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA 95616, USA.
Journal of Autoimmunity (Impact Factor: 7.02). 07/2011; 37(3):209-16. DOI: 10.1016/j.jaut.2011.06.001
Source: PubMed

ABSTRACT Our laboratory has hypothesized that xenobiotic modification of the native lipoyl moiety of the major mitochondrial autoantigen, the E2 subunit of the pyruvate dehydrogenase complex (PDC-E2), may lead to loss of self-tolerance in primary biliary cirrhosis (PBC). This thesis is based on the finding of readily detectable levels of immunoreactivity of PBC sera against extensive panels of protein microarrays containing mimics of the inner lipoyl domain of PDC-E2 and subsequent quantitative structure-activity relationships (QSARs). Importantly, we have demonstrated that murine immunization with one such mimic, 2-octynoic acid coupled to bovine serum albumin (BSA), induces anti-mitochondrial antibodies (AMAs) and cholangitis. Based upon these data, we have focused on covalent modifications of the lipoic acid disulfide ring and subsequent analysis of such xenobiotics coupled to a 15mer of PDC-E2 for immunoreactivity against a broad panel of sera from patients with PBC and controls. Our results demonstrate that AMA-positive PBC sera demonstrate marked reactivity against 6,8-bis(acetylthio)octanoic acid, implying that chemical modification of the lipoyl ring, i.e. disruption of the S-S disulfide, renders lipoic acid to its reduced form that will promote xenobiotic modification. This observation is particularly significant in light of the function of the lipoyl moiety in electron transport of which the catalytic disulfide constantly opens and closes and, thus, raises the intriguing thesis that common electrophilic agents, i.e. acetaminophen or non-steroidal anti-inflammatory drugs (NSAIDs), may lead to xenobiotic modification in genetically susceptible individuals that results in the generation of AMAs and ultimately clinical PBC.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Posttranslational modifications (PTMs) are defined as covalent modifications occurring in a specific protein amino acid in a time- and signal-dependent manner. Under physiological conditions, proteins are posttranslationally modified to carry out a large number of cellular events from cell signaling to DNA replication. However, an absence, deficiency, or excess in PTMs of a given protein can evolve into a target to trigger autoimmunity, since PTMs arise in the periphery and may not occur in the thymus; hence, proteins with PTMs never tolerize developing thymocytes. Consequently, when PTMs arise during cellular responses, such as inflammation, these modified self-antigens can be taken up and processed by the antigen-presenting cells (APCs). Autoreactive T cells, which recognize peptides presented by APCs, can then infiltrate into host tissue where the modified antigen serves to amplify the autoimmune response, eventually leading to autoimmune pathology. Furthermore, a PTM occurring in an amino acid residue can induce changes in the net charge of the protein, leading to conformational modifications in the tertiary and quaternary structure of the protein, especially interaction with human leukocyte antigen (HLA) molecules. Molecular mimicry (MM) was until now the prevailing hypothesis explaining generation of autoimmunity; nevertheless, experimental animal models need inflammation via infection or other immunogens to ensure autoimmunity; MM alone is not sufficient to develop autoimmunity. PTMs could arise as an additive factor to MM, which is required to start an autoimmune response. PTMs have been found to be present in different pathologic conditions such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), antiphospholipid syndrome, and primary biliary cirrhosis. The aim of the present review is to expose protein posttranslational modifications and the evidence suggesting their role in the generation of autoimmunity.
    Clinical Reviews in Allergy & Immunology 05/2014; DOI:10.1007/s12016-014-8424-0 · 4.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Within the last decade, several mouse models that manifest characteristic features of primary biliary cirrhosis (PBC) with antimitochondrial antibodies (AMAs) and immune-mediated biliary duct pathology have been reported. Here, the authors discuss the current findings on two spontaneous (nonobese diabetic autoimmune biliary disease [NOD.ABD] and dominant negative transforming growth factor-β receptor II [dnTGFβRII]) and two induced (chemical xenobiotics and microbial immunization) models of PBC. These models exhibit the serological, immunological, and histopathological features of human PBC. From these animal models, it is evident that the etiology of PBC is multifactorial and requires both specific genetic predispositions and environmental insults (either xenobiotic chemicals or microbial), which lead to the breaking of tolerance and eventually liver pathology. Human PBC is likely orchestrated by multiple factors and hence no single model can fully mimic the immunopathophysiology of human PBC. Nevertheless, knowledge gained from these models has greatly advanced our understanding of the major immunological pathways as well as the etiology of PBC.
    Seminars in Liver Disease 08/2014; 34(3):285-296. DOI:10.1055/s-0034-1383728 · 8.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The etiology of the autoimmune liver disease primary biliary cirrhosis (PBC) remains largely unresolved, owing in large part to the complexity of interaction between environmental and genetic contributors underlying disease development. Observations of disease clustering, differences in geographical prevalence, and seasonality of diagnosis rates suggest the environmental component to PBC is strong, and epidemiological studies have consistently found cigarette smoking and history of urinary tract infection to be associated with PBC. Current evidence implicates molecular mimicry as a primary mechanism driving loss of tolerance and subsequent autoimmunity in PBC, yet other environmentally influenced disease processes are likely to be involved in pathogenesis. In this review, the authors provide an overview of current findings and touch on potential mechanisms behind the environmental component of PBC.
    Seminars in Liver Disease 08/2014; 34(3):265-272. DOI:10.1055/s-0034-1383726 · 5.12 Impact Factor