The Role of Cellular Factors in Promoting HIV Budding

Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA.
Journal of Molecular Biology (Impact Factor: 3.96). 07/2011; 410(4):525-33. DOI: 10.1016/j.jmb.2011.04.055
Source: PubMed

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) becomes enveloped while budding through the plasma membrane, and the release of nascent virions requires a membrane fission event that separates the viral envelope from the cell surface. To facilitate this crucial step in its life cycle, HIV-1 exploits a complex cellular membrane remodeling and fission machinery known as the endosomal sorting complex required for transport (ESCRT) pathway. HIV-1 Gag directly interacts with early-acting components of this pathway, which ultimately triggers the assembly of the ESCRT-III membrane fission complex at viral budding sites. Surprisingly, HIV-1 requires only a subset of ESCRT-III components, indicating that the membrane fission reaction that occurs during HIV-1 budding differs in crucial aspects from topologically related cellular abscission events.


Available from: Heinrich G Gottlinger, Jun 15, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Self-propagating, infectious, virus-like vesicles (VLVs) are generated when an alphavirus RNA replicon expresses the vesicular stomatitis virus glycoprotein (VSV G) as the only structural protein. The mechanism that generates these VLVs lacking a capsid protein has remained a mystery for over 20 years. We present evidence that VLVs arise from membrane-enveloped RNA replication factories (spherules) containing VSV G protein that are largely trapped on the cell surface. After extensive passaging, VLVs evolve to grow to high titers through acquisition of multiple point mutations in their nonstructural replicase proteins. We reconstituted these mutations into a plasmid-based system from which high-titer VLVs can be recovered. One of these mutations generates a late domain motif (PTAP) that is critical for high-titer VLV production. We propose a model in which the VLVs have evolved in vitro to exploit a cellular budding pathway that is hijacked by many enveloped viruses, allowing them to bud efficiently from the cell surface. Our results suggest a basic mechanism of propagation that may have been used by primitive RNA viruses lacking capsid proteins. Capsids may have evolved later to allow more efficient packaging of RNA, greater virus stability, and evasion of innate immunity.
    Proceedings of the National Academy of Sciences 11/2014; DOI:10.1073/pnas.1414991111 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Newly released human immunodeficiency virus type 1 (HIV-1) particles obligatorily undergo a maturation process to become infectious. The HIV-1 protease (PR) initiates this step, catalyzing the cleavage of the Gag and Gag-Pro-Pol structural polyproteins. Proper organization of the mature virus core requires that cleavage of these polyprotein substrates proceeds in a highly regulated, specific series of events. The vital role the HIV-1 PR plays in the viral life cycle has made it an extremely attractive target for inhibition and has accordingly fostered the development of a number of highly potent substrate-analog inhibitors. Though the PR inhibitors (PIs) inhibit only the HIV-1 PR, their effects manifest at multiple different stages in the life cycle due to the critical importance of the PR in preparing the virus for these subsequent events. Effectively, PIs masquerade as entry inhibitors, reverse transcription inhibitors, and potentially even inhibitors of post-reverse transcription steps. In this chapter, we review the triple threat of PIs: the intermolecular cooperativity in the form of a cooperative dose-response for inhibition in which the apparent potency increases with increasing inhibition; the pleiotropic effects of HIV-1 PR inhibition on entry, reverse transcription, and post-reverse transcription steps; and their potency as transition state analogs that have the potential for further improvement that could lead to an inability of the virus to evolve resistance in the context of single drug therapy.
    Current topics in microbiology and immunology 03/2015; DOI:10.1007/82_2015_438 · 3.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Galectin-3 has been reported to regulate the functions of a number of immune cell types. We previously reported that galectin-3 is translocated to immunological synapses in T cells upon T cell receptor engagement, where it associates with ALG-2-interacting protein X (Alix). Alix is known to coordinate with the endosomal sorting complex required for transport (ESCRT) to promote HIV-1 virion release. We hypothesized that galectin-3 plays a role in HIV-1 viral budding. Cotransfection of cells of the Jurkat T line with galectin-3 and HIV-1 plasmids resulted in increased HIV-1 budding, and suppression of galectin-3 expression by RNAi in Hut78 and primary CD4+ T cells led to reduced HIV-1 budding. We used immunofluorescence microscopy to observe the partial colocalization of galectin-3, Alix, and Gag in HIV-1-infected cells. Results from co-immunoprecipitation experiments indicate that galectin-3 expression promotes Alix-Gag p6 association, whereas the results of Alix knockdown suggest that galectin-3 promotes HIV-1 budding through Alix. HIV-1 particles released from galectin-3-expressing cells acquire the galectin-3 protein in an Alix-dependent manner, with proteins primarily residing inside the virions. We also found that the galectin-3 N-terminal domain interacts with the proline-rich region (PRR) of Alix. Collectively, these results suggest that endogenous galectin-3 facilitates HIV-1 budding by promoting the Alix-Gag p6 association.
    Glycobiology 07/2014; DOI:10.1093/glycob/cwu064 · 3.75 Impact Factor