Neuropeptide Y signaling modulates the expression of ethanol-induced behavioral sensitization in mice.

Department of Psychology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA.
Addiction Biology (Impact Factor: 5.93). 07/2011; 17(2):338-50. DOI: 10.1111/j.1369-1600.2011.00336.x
Source: PubMed

ABSTRACT Neuropeptide Y (NPY) and protein kinase A (PKA) have been implicated in neurobiological responses to ethanol. We have previously reported that mutant mice lacking normal production of the RIIβ subunit of PKA (RIIβ-/- mice) show enhanced sensitivity to the locomotor stimulant effects of ethanol and increased behavioral sensitization relative to littermate wild-type RIIβ+/+ mice. We now report that RIIβ-/- mice also show increased NPY immunoreactivity in the nucleus accumbens (NAc) core and the ventral striatum relative to RIIβ+/+ mice. These observations suggest that elevated NPY signaling in the NAc and/or striatum may contribute to the increased sensitivity to ethanol-induced behavioral sensitization that is a characteristic of RIIβ-/- mice. Consistently, NPY-/- mice failed to display ethanol-induced behavioral sensitization that was evident in littermate NPY+/+ mice. To examine more directly the role of NPY in the locomotor stimulant effects of ethanol, we infused a recombinant adeno-associated virus (rAAV) into the region of the NAc core of DBA/2J mice. The rAAV-fibronectin (FIB)-NPY(13-36) vector expresses and constitutively secretes the NPY fragment NPY(13-36) (a selective Y(2) receptor agonist) from infected cells in vivo. Mice treated with the rAAV-FIB-NPY(13-36) vector exhibited reduced expression of ethanol-induced behavioral sensitization compared with mice treated with a control vector. Taken together, the current data provide the first evidence that NPY signaling in the NAc core and the Y(2) receptor modulate ethanol-induced behavioral sensitization.


Available from: Todd E Thiele, Jun 13, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuropeptide Y (NPY)- and acetylcholine-containing interneurons of the nucleus accumbens (NAc) seem to play a major role in the rewarding effects of alcohol. This study investigated the relationship between chronic alcohol consumption and subsequent withdrawal and the expression of NPY and acetylcholine in the NAc, and the possible involvement of nerve growth factor (NGF) in mediating the effects of ethanol. Rats ingesting an aqueous ethanol solution over 6 months and rats subsequently deprived from ethanol during 2 months were used to estimate the total number and the somatic volume of NPY and cholinergic interneurons, and the numerical density of cholinergic varicosities in the NAc. The tissue content of choline acetyltransferase (ChAT) and catecholamines were also determined. The number of NPY interneurons increased during alcohol ingestion and returned to control values after withdrawal. Conversely, the number and the size of cholinergic interneurons, and the amount of ChAT were unchanged in ethanol-treated and withdrawn rats, but the density of cholinergic varicosities was reduced by 50% during alcohol consumption and by 64% after withdrawal. The concentrations of dopamine and norepinephrine were unchanged both during alcohol consumption and after withdrawal. The administration of NGF to withdrawn rats significantly increased the number of NPY-immunoreactive neurons, the size of cholinergic neurons and the density of cholinergic varicosities. Present data show that chronic alcohol consumption leads to long-lasting neuroadaptive changes of the cholinergic innervation of the NAc and suggest that the cholinergic system is a potential target for the development of therapeutic strategies in alcoholism and abstinence.
    Neurotoxicology and Teratology 07/2014; DOI:10.1016/ · 3.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The neuropeptide Y system is known to be involved in the regulation of many central physiological and pathophysiological processes, such as energy homeostasis, obesity, cancer, mood disorders and epilepsy. Four Y receptor subtypes have been cloned from human tissue (hY1, hY2, hY4 and hY5) which form a multiligand/ multireceptor system together with their three peptidic agonists (NPY, PYY and PP). Addressing this system for medical application requires on the one hand detailed information about the receptor-ligand interaction to design subtype-selective compounds. On the other hand comprehensive knowledge about alternative receptor signaling, as well as desensitization, localization and downregulation is crucial to circumvent the development of undesired side-effects and drug resistance. By bringing both parts together, highly potent and long-lasting drugs with minimized side-effects can be engineered. Here, current knowledge about Y receptor export, internalization, recycling, and degradation is summarized with focus on the human Y receptor subtypes, and discussed in terms of its impact on therapeutic application.
    Biological Chemistry 03/2013; 394(8). DOI:10.1515/hsz-2013-0123 · 2.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Convergent functional genomics (CFG) is a translational methodology that integrates in a Bayesian fashion multiple lines of evidence from studies in human and animal models to get a better understanding of the genetics of a disease or pathological behavior. Here the integration of data sets that derive from forward genetics in animals and genetic association studies including genome wide association studies (GWAS) in humans is described for addictive behavior. The aim of forward genetics in animals and association studies in humans is to identify mutations (e.g. SNPs) that produce a certain phenotype; i.e. "from phenotype to genotype". Most powerful in terms of forward genetics is combined quantitative trait loci (QTL) analysis and gene expression profiling in recombinant inbreed rodent lines or genetically selected animals for a specific phenotype, e.g. high vs. low drug consumption. By Bayesian scoring genomic information from forward genetics in animals is then combined with human GWAS data on a similar addiction-relevant phenotype. This integrative approach generates a robust candidate gene list that has to be functionally validated by means of reverse genetics in animals; i.e. "from genotype to phenotype". It is proposed that studying addiction relevant phenotypes and endophenotypes by this CFG approach will allow a better determination of the genetics of addictive behavior.
    01/2013; 1:18. DOI:10.1186/2193-9616-1-18