Role of parietal and principal gastric mucosa cells in the phenomenon of concentration of aluminum and indium.

Laboratoire de Physiologie, Faculté de Médecine de Tunis (Université de Tunis El Manar), 15, Rue Djebel Lakhdar, La Rabta 1007, Tunis, Tunisia.
Microscopy Research and Technique (Impact Factor: 1.59). 07/2011; 75(2):182-8. DOI: 10.1002/jemt.21041
Source: PubMed

ABSTRACT The subcellular behavior of aluminum and indium, used in medical and industrial fields, was studied in the gastric mucosa and the liver after their intragastric administration to rats, using, two of the most sensitive methods of observation and microanalysis, the transmission electron microscopy, and the secondary ion mass spectrometry. The ultrastructural study showed the presence of electron dense deposits, in the lysosomes of parietal and principal gastric mucosa cells but no loaded lysosomes were observed in the different studied hepatic territories. The microanalytical study allowed the identification of the chemical species present in those deposits as aluminum or indium isotopes and the cartography of their distribution. No modification was observed in control rats tissues. In comparison to previous studies describing the mechanism of aluminum concentration in the gastric mucosa and showing that this element was concentrated in the lysosomes of fundic and antral human gastric mucosa, our study provided additional informations about the types of cells involved in the phenomenon of concentration of aluminum and indium, which are the parietal and the principal cells of the gastric mucosa. Our study demonstrated that these cells have the ability to concentrate selectively aluminum and indium in their lysosomes, as a defensive reaction against intoxication by foreign elements.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aluminium (Al) toxicity problem in parenteral nutrition solutions (PNS) is decades old and is still unresolved. The aim of this review is to gather updated information about this matter, regarding legislation, manifestations, diagnostics and treatment, patient population at risk and the actions to be taken to limit its accumulation. A structured search using MeSH vocabulary and Title/Abstract searches was conducted in PubMed ( up to November 2012. Al is ubiquitous, facilitating its potential for exposure. Nevertheless, humans have several mechanisms to prevent significant absorption and to aid its elimination; therefore, the vast majority of the population is not at risk for Al toxicity. However, when protective gastrointestinal mechanisms are bypassed (for example, parenteral fluids), renal function is impaired (for example, adult patients with renal compromise and neonates) or exposure is high (for example, long-term PNS), Al is prone to accumulate in the body, including manifestations such as impaired neurological development, Alzheimer's disease, metabolic bone disease, dyslipemia and even genotoxic activity. A high Al content in PNS is largely the result of three parenteral nutrient additives: calcium gluconate, inorganic phosphates and cysteine hydrochloride. Despite the legislative efforts, some factors make difficult to comply with the rule and, therefore, to limit the Al toxicity. Unfortunately, manufacturers have not universally changed their processes to obtain a lower Al content of parenteral drug products (PDP). In addition, the imprecise information provided by PDP labels and the high lot-to-lot variation make the prediction of Al content rather inaccurate.
    European journal of clinical nutrition 03/2013; 67(3):230-8. · 3.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aluminum (Al) and indium (In) have embryotoxic, neurotoxic and genotoxic effects, oxidative stress being one of the possible mechanisms involved in their cytotoxicity. We have recently demonstrated that indium intraperitoneal (ip) administration induced histological disorganization of testicular tissue. In the present research we aimed at investigating the effect of Al and In ip administration on systemic and testicular oxidative stress status. Studies were performed on Wistar rats ip injected with Al, In or physiological solution for two weeks. Our results showed that In significantly decreased the absolute weight of testicles. Measurements of lactate dehydrogenase (LDH) and paraoxonase (PON) activities showed that In induced a significant augmentation in the first parameter but no changes were observed in the second. Both Al and In caused oxidative stress in testicles by increasing malondialdehyde (MDA) and protein carbonyls (PC) production. Concomitantly, thiol group (-SH) and glutathione (GSH) level were enhanced in the testicles. In the blood, while concentrations of MDA was not changed, those of GSH was significantly decreased in the Al and In groups. Our results indicated that Al and In cause oxidative stress both in blood and testicles but In has cytotoxic effect as well as negative impact on testicle weights. These findings could explain the testicular histological alterations previously described after In ip administration.
    Acta Physiologica Hungarica 12/2013; · 0.75 Impact Factor


Available from
Jun 2, 2014