Article

Abstract P3-10-41: Quantitative Immunohistochemical Analysis and Prognostic Significance of TRPS-1, a New GATA Transcription Factor Family Member, in Breast Cancer

Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA.
Hormones and Cancer (Impact Factor: 2.15). 02/2010; 1(1):21-33. DOI: 10.1007/s12672-010-0008-8
Source: PubMed

ABSTRACT The trichorhinophalangeal syndrome 1 (TRPS-1) gene is a novel GATA transcription factor family member. Previously, using a gene expression profiling and immunohistochemistry (IHC) screen, we identified TRPS-1 as a highly prevalent gene in breast cancer (BC), expressed in >90% of estrogen receptor alpha (ERα)(+) and ERα(-) BC subtypes. TRPS-1 was also shown to be expressed in prostate cancer where it was shown to play a proapoptotic function during androgen withdrawal possibly through regulating antioxidant metabolism. The role of TRPS-1 and its prognostic significance in hormone-dependent and hormone-independent BC however is not known. In this study, we developed a new quantitative IHC (qIHC) method to further study TRPS-1 as a marker and possible prognostic indicator in BC. By using this method, a quantitative parameter for TRPS-1 expression called a quick score (QS) was derived from the measured labeling index and mean optical density after IHC and applied to a set of 152 stage II/III BC patients from 1993 to 2006 who did not receive preoperative chemotherapy. Associations between QS and tumor characteristics were evaluated using the Kruskal-Wallis test. A wide range of TRPS-1 QS was found among the sample set with higher TRPS-1 QS significantly associated with tumor ERα (p = 0.023 for QS and p = 0.028 for Allred score), progesterone receptor (p = 0.009), and GATA-3 (p < 0.0001). TRPS-1 QS was also positively associated with HER2 status (p = 0.026). Further analysis of different ductal structures in ten BC cases revealed that TRPS-1 expression was expressed at low levels in the remaining normal ducts and in areas of usual ductal hyperplasia but showed marked increase in expression in ductal carcinoma in situ and invasive carcinoma lesions in the tissue. An analysis of TRPS-1 expression in association with overall survival in the 152 stage II/III sample set also revealed that TRPS-1 QS (≥4.0) was significantly associated with improved survival (p = 0.0165). Patients with TRPS-1 QS <4 had a hazard ratio of 2 (p = 0.019) after univariate Cox proportional hazards analysis. In summary, this new qIHC approach was found to reveal critical differences in TRPS-1 expression in primary BC samples and found that it is a promising prognostic marker that should be further evaluated as a possible tumor suppressor gene facilitating improved survival in different subtypes of BC.

0 Followers
 · 
175 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: GATA transcription factor family members have been found to play a critical role in the differentiation of many tissue types. For example, GATA-3 has been found to be highly correlated with estrogen receptor α (ER) expression and is emerging as one of the "master regulators" in breast ductal epithelial cell differentiation. Recently, we discovered another GATA family member highly prevalent in breast cancer called the trichorhinophalangeal syndrome-1 gene (TRPS-1). Using a quantitative immunohistochemistry (qIHC) approach, we found that TRPS-1 was significantly correlated with ER, PR, GATA-3, as well as HER2 expression. However, TRPS-1 was also found to be expressed in a high proportion of ER(-) ductal epithelial breast cancers (BCs), indicating that it may act as a ductal epithelial cell-specific transcription factor regulating cell fate at some point in the epithelial cell differentiation pathway. In keeping with this hypothesis, we found that TRPS-1 protein expression in BC above a certain threshold using qIHC correlated with markedly improved overall survival. Cox proportional hazards analysis found that both TRPS-1 and ER expression above critical threshold equally predicted for improved survival. Thus, TRPS-1 may be a powerful new positive prognostic marker in BC, and further IHC studies, as well as examination of its molecular function in ductal epithelial cell differentiation in the breast, are warranted. In this regard, data on the role of TRPS-1 in the differentiation of cells from mesenchymal precursors in other tissues, such as kidney metanephric mesenchymal cells, columnar chondrocytes, and osteoblasts, in mouse models may be useful. Indeed, these studies have found that TRPS-1 is a critical regulator of mesenchymal-to-epithelial cell transition. In the mammary gland, the restricted expression of TRPS-1 in human, mouse, and rat ductal epithelial cells suggests that it may also play a similar role during ductal luminal progenitor/stem cell differentiation. We present a model of TRPS-1 action in which it may act upstream of GATA-3 and ER on an earlier ductal epithelial progenitor cell or mammary stem cell during mammary gland development and also helps prevent reversion of ER(+) BC cells back into mesenchymal-like cells. This model predicts that BCs with low or no TRPS-1 expression may inherently be much less differentiated and more aggressive tumors with less favorable prognosis.
    Hormones and Cancer 04/2011; 2(2):132-43. DOI:10.1007/s12672-011-0067-5 · 2.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The basal-like subtype of breast cancer has an aggressive clinical behavior compared to that of the luminal subtype. We identified the microRNAs (miRNAs) miR-221 and miR-222 (miR-221/222) as basal-like subtype-specific miRNAs and showed that expression of miR-221/222 decreased expression of epithelial-specific genes and increased expression of mesenchymal-specific genes, and increased cell migration and invasion in a manner characteristic of the epithelial-to-mesenchymal transition (EMT). The transcription factor FOSL1 (also known as Fra-1), which is found in basal-like breast cancers but not in the luminal subtype, stimulated the transcription of miR-221/222, and the abundance of these miRNAs decreased with inhibition of the epidermal growth factor receptor (EGFR) or MEK (mitogen-activated or extracellular signal-regulated protein kinase kinase), placing miR-221/222 downstream of the RAS pathway. Furthermore, miR-221/222-mediated reduction in E-cadherin abundance depended on their targeting the 3' untranslated region of the GATA family transcriptional repressor TRPS1 (tricho-rhino-phalangeal syndrome type 1), which inhibited EMT by decreasing ZEB2 (zinc finger E-box-binding homeobox2) expression. We conclude that by promoting EMT, miR-221/222 may contribute to the more aggressive clinical behavior of basal-like breast cancers.
    Science Signaling 06/2011; 4(177):ra41. DOI:10.1126/scisignal.2001538 · 7.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Compared with the luminal subtype, the basal-like subtype of breast cancer has an aggressive clinical behavior, but the reasons for this difference between the two subtypes are poorly understood. We identified microRNAs (miRNAs) miR-221 and miR-222 (miR-221/222) as basal-like subtype-specific miRNAs that decrease expression of epithelial-specific genes and increase expression of mesenchymal-specific genes. In addition, expression of these miRNAs increased cell migration and invasion, which collectively are characteristics of the epithelial-to-mesenchymal transition (EMT). The basal-like transcription factor FOSL1 (also known as Fra-1) directly stimulated the transcription of miR-221/222, and the abundance of these miRNAs decreased with inhibition of MEK (mitogen-activated or extracellular signal-regulated protein kinase kinase), placing miR-221/222 downstream of the RAS pathway. The miR-221/222-mediated reduction in E-cadherin abundance depended on their targeting of the 3' untranslated region (3'UTR) of TRPS1 (trichorhinophalangeal syndrome type 1), which is a member of the GATA family of transcriptional repressors. TRPS1 inhibited EMT by directly repressing expression of ZEB2 (Zinc finger E-box-binding homeobox 2). Therefore, miR-221/222 may contribute to the aggressive clinical behavior of basal-like breast cancers.
    Science Signaling 08/2011; 4(186):pt5. DOI:10.1126/scisignal.2002258 · 7.65 Impact Factor
Show more