Article

The alpha subunit of the G protein G13 regulates activity of one or more Gli transcription factors independently of smoothened.

Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 07/2011; 286(35):30714-22. DOI: 10.1074/jbc.M111.219279
Source: PubMed

ABSTRACT Smoothened (Smo) is a seven-transmembrane (7-TM) receptor that is essential to most actions of the Hedgehog family of morphogens. We found previously that Smo couples to members of the G(i) family of heterotrimeric G proteins, which in some cases are integral although alone insufficient in the activation of Gli transcription factors through Hedgehog signaling. In response to a report that the G(12/13) family is relevant to Hedgehog signaling as well, we re-evaluated the coupling of Smo to one member of this family, G(13), and investigated the capacity of this and other G proteins to activate one or more of forms of Gli. We found no evidence that Smo couples directly to G(13). We found nonetheless that Gα(13) and to some extent Gα(q) and Gα(12) are able to effect activation of Gli(s). This capacity is realized in some cells, e.g. C3H10T1/2, MC3T3, and pancreatic cancer cells, but not all cells. The mechanism employed is distinct from that achieved through canonical Hedgehog signaling, as the activation does not involve autocrine signaling or in any other way require active Smo and does not necessarily involve enhanced transcription of Gli1. The activation by Gα(13) can be replicated through a G(q)/G(12/13)-coupled receptor, CCK(A), and is attenuated by inhibitors of p38 mitogen-activated protein kinase and Tec tyrosine kinases. We posit that G proteins, and perhaps G(13) in particular, provide access to Gli that is independent of Smo and that they thus establish a basis for control of at least some forms of Gli-mediated transcription apart from Hedgehogs.

Full-text

Available from: Natalia A Riobo-Del Galdo, Mar 31, 2015
0 Followers
 · 
95 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The evolutionarily conserved Hedgehog (Hh) signaling pathway is essential for correct embryogenesis and is misregulated in several malignancies. In cell culture, Hh-sensitive cells display a striking dependence on cell density with active Hh signaling requiring cell-to-cell contact. As the Hippo/YAP system is tightly linked to cell density control and contact inhibition, we investigated the cross-talk between the two pathways. Our data reveal that the suppression of Hh signaling in the absence of cellular contacts is independent of primary cilia and is mediated by the YAP oncogene. Overexpression of YAP blocks Hh signaling whereas RNA interference-mediated knockdown of YAP enhances Hh/GLI activity. Despite this negative regulation, Hh signaling promotes YAP activity through post-transcriptional mechanisms, resulting in a negative feedback loop. In vivo, we found strong nuclear YAP immunoreactivity restricted to compartments with low Hh pathway activity in human and mouse pancreatic cancer. Finally, we identified protease-activated receptors (PARs) as molecules being able to override the inverse Hippo/Hh regulation, potentially giving tumors a mechanism to utilize both oncogenic pathways in parallel.Oncogenesis (2014) 3, e112; doi:10.1038/oncsis.2014.27; published online 11 August 2014.
    08/2014; 3(8):e112. DOI:10.1038/oncsis.2014.27
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity and diabetes represent key healthcare challenges of our day, affecting upwards of one billion people worldwide. These individuals are at higher risk for cancer, stroke, blindness, heart and cardiovascular disease, and to date, have no effective long-term treatment options available. Recent and accumulating evidence has implicated the developmental morphogen Hedgehog and its downstream signalling in metabolic control. Generally thought to be quiescent in adults, hedgehog is associated with several human cancers, and as such, has already emerged as a therapeutic target in oncology. Here, we attempt to give a comprehensive overview of the key signalling events associated with both canonical and non-canonical Hedgehog signalling, and highlight the increasingly complex regulatory modalities that appear to link Hedgehog and control metabolism. We highlight these key findings and discuss their impact for therapeutic development, cancer and metabolic disease.
    Seminars in Cell and Developmental Biology 05/2014; DOI:10.1016/j.semcdb.2014.05.007 · 5.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Small cell lung carcinoma (SCLC) often features the upregulation of the Sonic hedgehog (Shh) pathway leading to activation of Gli transcription factors. SCLC cells secrete bombesin (BBS)-like neuropeptides that act as autocrine growth factors. Here, we show that SCLC tumor samples feature co-expression of Shh and BBS-cognate receptor (gastrin-releasing peptide receptor (GRPR)). We also demonstrate that BBS activates Gli in SCLC cells, which is crucial for BBS-mediated SCLC proliferation, because cyclopamine, an inhibitor of the Shh pathway, hampered the BBS-mediated effects. BBS binding to GRPR stimulated Gli through its downstream Gαq and Gα12/13 GTPases, and consistently, other Gαq and Gα13 coupled receptors (such as muscarinic receptor, m1, and thrombin receptor, PAR-1) and constitutively active GαqQL and Gα12/13QL mutants stimulated Gli. By using cells null for Gαq and Gα12/13, we demonstrate that these G proteins are strictly necessary for Gli activation by BBS. Moreover, by using constitutively active Rho small G-protein (Rho QL) as well as its inhibitor, C3 toxin, we show that Rho mediates G-protein-coupled receptor (GPCR)-, Gαq- and Gα12/13-dependent Gli stimulation. At the molecular level, BBS caused a significant increase in Shh gene transcription and protein secretion that was dependent on BBS-induced GPCR/Gαq-12/13/Rho mediated activation of nuclear factor κB (NFκB), which can stimulate a NF-κB response element in the Shh gene promoter. Our data identify a novel molecular network acting in SCLC linking autocrine BBS and Shh circuitries and suggest Shh inhibitors as novel therapeutic strategies against this aggressive cancer type.Oncogene advance online publication, 21 April 2014; doi:10.1038/onc.2014.104.
    Oncogene 04/2014; 34(13). DOI:10.1038/onc.2014.104 · 8.56 Impact Factor