Focal Adhesion Kinase Regulates Smooth Muscle Cell Recruitment to the Developing Vasculature

Department of Pathology, University of North Carolina, Chapel Hill, 27599-7525, USA.
Arteriosclerosis Thrombosis and Vascular Biology (Impact Factor: 6). 07/2011; 31(10):2193-202. DOI: 10.1161/ATVBAHA.111.232231
Source: PubMed


The investment of newly formed endothelial cell tubes with differentiated smooth muscle cells (SMC) is critical for appropriate vessel formation, but the underlying mechanisms remain unknown. We previously showed that depletion of focal adhesion kinase (FAK) in the nkx2.5 expression domain led to aberrant outflow tract (OFT) morphogenesis and strove herein to determine the cell types and mechanisms involved.
We crossed fak(loxp) targeted mice with available Cre drivers to deplete FAK in OFT SMC (FAK(wnt) and FAK(nk)) or coronary SMC (FAK(cSMC)). In each case, depletion of FAK led to defective vasculogenesis that was incompatible with postnatal life. Immunohistochemical analysis of the mutant vascular structures revealed that FAK was not required for progenitor cell proliferation, survival, or differentiation into SMC but was necessary for subsequent SMC recruitment to developing vasculature. Using a novel FAK-null SMC culture model, we found that depletion of FAK did not influence SMC growth or survival, but blocked directional SMC motility and invasion toward the potent endothelial-derived chemokine, platelet-derived growth factor PDGFBB. FAK depletion resulted in unstable lamellipodial protrusions due to defective spatial-temporal activation of the small GTPase, Rac-1, and lack of Rac1-dependent recruitment of cortactin (an actin stabilizing protein) to the leading edge. Moreover, FAK null SMC exhibited a significant reduction in stimulated extracellular matrix degradation.
FAK drives PDGFBB-stimulated SMC chemotaxis/invasion and is essential for SMC to appropriately populate the aorticopulmonary septum and the coronary vascular plexus.

Download full-text


Available from: Joan M Taylor, Mar 28, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this review we summarize the current understanding of signal transduction downstream of vascular endothelial growth factor A (VEGFA) and its receptor VEGFR2, and the relationship between these signal transduction pathways and the hallmark responses of VEGFA, angiogenesis and vascular permeability. These physiological responses involve a number of effectors, including extracellular signal-regulated kinases (ERKs), Src, phosphoinositide 3 kinase (PI3K)/Akt, focal adhesion kinase (FAK), Rho family GTPases, endothelial NO and p38 mitogen-activated protein kinase (MAPK). Several of these factors are involved in the regulation of both angiogenesis and vascular permeability. Tumour angiogenesis primarily relies on VEGFA-driven responses, which to a large extent result in a dysfunctional vasculature. The reason for this remains unclear, although it appears that certain aspects of the VEGFA-stimulated angiogenic milieu (high level of microvascular density and permeability) promote tumour expansion. The high degree of redundancy and complexity of VEGFA-driven tumour angiogenesis may explain why tumours commonly develop resistance to anti-angiogenic therapy targeting VEGFA signal transduction. © 2012 The Association for the Publication of the Journal of Internal Medicine.
    Journal of Internal Medicine 12/2012; 273(2). DOI:10.1111/joim.12019 · 6.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Leiomyosarcoma (LMS) represent 15 % of adult sarcomas. The aim of this work was to identify novel altered pathways in LMS, which may be of therapeutic value for patients. Thirteen fresh frozen samples of soft tissue and visceral LMS were analyzed and compared with normal smooth muscle uterine tissue (NSM) for phosphoproteomic profile. Four proteins were found differentially expressed including Tyro3. The functional role of Tyro3 and its ligand Gas6 was investigated in two LMS cell lines, SK-LMS-1 and CNIO-AA. Four proteins and phosphoproteins were differentially expressed in LMS samples vs NSM: A loss of FAK Y397 phosphorylation was observed in all LMSs, while Tyro3, MSH2 and PKC theta were consistently overexpressed. Gas6, the major ligand of Tyro3, was expressed in 8 of the 13 LMS samples, and Gas6 expression highly correlated to Akt Y473 phosphorylation and to a lesser extent to Erk1/2 phosphorylation. SK-LMS-1 and CNIO-AA LMS expressed Tyro3, Axl and Gas6 at high level in CNIO-AA while at low levels in SK-LMS-1. Exposure of both cell lines to foretinib, a tyrosine kinase inhibitor of Met, Axl and Tyro3, reduced cell viability and induced caspase 3/7 activation. Transfection of CNIO-AA with small interfering RNA directed against Tyro3 and Axl genes induced a reduction of the expression of the specific proteins and, when combined, significantly reduced CNIO-AA cell viability. Leiomyosarcomas overexpress Tyro3. Gas6, a ligand of Tyro3, exerts an autocrine activities though Tyro3 and Axl in a subgroup of LMS.
    Targeted Oncology 01/2013; 8(4). DOI:10.1007/s11523-012-0249-2 · 4.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During heart development, the epicardium, which originates from the proepicardial organ (PE), is a source of coronary vessels. The PE develops from the posterior visceral mesoderm of the pericardial coelom after stimulation with a combination of weak bone morphogenetic protein and strong fibroblast growth factor (FGF) signaling. PE-derived cells migrate across the heart surface to form the epicardial sheet, which subsequently seeds multipotent subepicardial mesenchymal cells via epithelial-mesenchymal transition, which is regulated by several signaling pathways including retinoic acid, FGF, sonic hedgehog, Wnt, transforming growth factor-β, and platelet-derived growth factor. Subepicardial endothelial progenitors eventually generate the coronary vascular plexus, which acquires an arterial or venous phenotype, connects with the sinus venosus and aortic sinuses, and then matures through the recruitment of vascular smooth muscle cells under the regulation of complex growth factor signaling pathways. These developmental programs might be activated in the adult heart after injury and play a role in the regeneration/repair of the myocardium.
    International review of cell and molecular biology 02/2013; 303:263-317. DOI:10.1016/B978-0-12-407697-6.00007-6 · 3.42 Impact Factor
Show more