Spatial and temporal patterns of malaria incidence in Mozambique.

Department of Mathematics and Informatics (DMI), Eduardo Mondlane University, Maputo, Mozambique.
Malaria Journal (Impact Factor: 3.49). 07/2011; 10:189. DOI: 10.1186/1475-2875-10-189
Source: PubMed

ABSTRACT The objective of this study is to analyze the spatial and temporal patterns of malaria incidence as to determine the means by which climatic factors such as temperature, rainfall and humidity affect its distribution in Maputo province, Mozambique.
This study presents a model of malaria that evolves in space and time in Maputo province-Mozambique, over a ten years period (1999-2008). The model incorporates malaria cases and their relation to environmental variables. Due to incompleteness of climatic data, a multiple imputation technique is employed. Additionally, the whole province is interpolated through a Gaussian process. This method overcomes the misalignment problem of environmental variables (available at meteorological stations--points) and malaria cases (available as aggregates for every district--area). Markov Chain Monte Carlo (MCMC) methods are used to obtain posterior inference and Deviance Information Criteria (DIC) to perform model comparison.
A Bayesian model with interaction terms was found to be the best fitted model. Malaria incidence was associated to humidity and maximum temperature. Malaria risk increased with maximum temperature over 28 °C (relative risk (RR) of 0.0060 and 95% Bayesian credible interval (CI) of 0.00033-0.0095) and humidity (relative risk (RR) of 0.00741 and 95% Bayesian CI 0.005141-0.0093). The results would suggest that additional non-climatic factors including socio-economic status, elevation, etc. also influence malaria transmission in Mozambique.
These results demonstrate the potential of climate predictors particularly, humidity and maximum temperature in explaining malaria incidence risk for the studied period in Maputo province. Smoothed maps obtained as monthly average of malaria incidence allowed to visualize months of initial and peak transmission. They also illustrate a variation on malaria incidence risk that might not be related to climatic factors. However, these factors are still determinant for malaria transmission and intensity in the region.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Malaria attacks are not evenly distributed in space in time. In highland areas with low endemicity, malaria transmission is highly variable and malaria acquisition risk for individuals is unevenly distributed even within a neighbourhood. Characterizing the spatiotemporal distribution of malaria cases in high-altitude villages is necessary to prioritize the risk areas and facilitate interventions.
    Malaria Journal 06/2014; 13(1):223. · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The distribution of anopheline mosquitoes is determined by temporally dynamic environmental and human-associated variables, operating over a range of spatial scales. Macro-spatial short-term trends are driven predominantly by prior (lagged) seasonal changes in climate, which regulate the abundance of suitable aquatic larval habitats. Micro-spatial distribution is determined by the location of these habitats, proximity and abundance of available human bloodmeals and prevailing micro-climatic conditions. The challenge of analysing-in a single coherent statistical framework-the lagged and distributed effect of seasonal climate changes simultaneously with the effects of an underlying hierarchy of spatial factors has hitherto not been addressed. Data on Anopheles gambiae sensu stricto and A. funestus collected from households in Kilifi district, Kenya, were analysed using polynomial distributed lag generalized linear mixed models (PDL GLMMs). Anopheline density was positively and significantly associated with amount of rainfall between 4 to 47 days, negatively and significantly associated with maximum daily temperature between 5 and 35 days, and positively and significantly associated with maximum daily temperature between 29 and 48 days in the past (depending on Anopheles species). Multiple-occupancy households harboured greater mosquito numbers than single-occupancy households. A significant degree of mosquito clustering within households was identified. The PDL GLMMs developed here represent a generalizable framework for analysing hierarchically-structured data in combination with explanatory variables which elicit lagged effects. The framework is a valuable tool for facilitating detailed understanding of determinants of the spatio-temporal distribution of Anopheles. Such understanding facilitates delivery of targeted, cost-effective and, in certain circumstances, preventative antivectorial interventions against malaria.
    Parasites & Vectors 01/2013; 6(1):311. · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Heterogeneous patterns of malaria transmission are thought to be driven by factors including host genetics, distance to mosquito breeding sites, housing construction, and socio-behavioural characteristics. Evaluation of local transmission epidemiology to characterize malaria risk is essential for planning malaria control and elimination programmes. The use of geographical information systems (GIS) techniques has been a major asset to this approach. To assess time and space distribution of malaria disease in Bandiagara, Mali, within a transmission season, data were used from an ongoing malaria incidence study that enrolled 300 participants aged under six years old". METHODS: Children's households were georeferenced using a handheld global position system. Clinical malaria was defined as a positive blood slide for Plasmodium falciparum asexual stages associated with at least one of the following signs: headache, body aches, fever, chills and weakness. Daily rainfall was measured at the local weather station.Landscape features of Bandiagara were obtained from satellite images and field survey. QGISTM software was used to map malaria cases, affected and non-affected children, and the number of malaria episodes per child in each block of Bandiagara. Clusters of high or low risk were identified under SaTScan(R) software according to a Bernoulli model. RESULTS: From June 2009 to May 2010, 296 clinical malaria cases were recorded. Though clearly temporally related to the rains, Plasmodium falciparum occurrence persisted late in the dry season. Two "hot spots" of malaria transmission also found, notably along the Yame River, characterized by higher than expected numbers of malaria cases, and high numbers of clinical episodes per child. Conversely, the north-eastern sector of the town had fewer cases despite its proximity to a large body of standing water which was mosquito habitat. CONCLUSION: These results confirm the existence of a marked spatial heterogeneity of malaria transmission in Bandiagara, providing support for implementation of targeted interventions.
    Malaria Journal 03/2013; 12(1):82. · 3.49 Impact Factor

Full-text (5 Sources)

Available from
May 23, 2014