Article

Interactions between glucocorticoid treatment and cis-regulatory polymorphisms contribute to cellular response phenotypes.

Department of Human Genetics, The University of Chicago, Chicago, IL, USA.
PLoS Genetics (Impact Factor: 8.52). 07/2011; 7(7):e1002162. DOI: 10.1371/journal.pgen.1002162
Source: PubMed

ABSTRACT Glucocorticoids (GCs) mediate physiological responses to environmental stress and are commonly used as pharmaceuticals. GCs act primarily through the GC receptor (GR, a transcription factor). Despite their clear biomedical importance, little is known about the genetic architecture of variation in GC response. Here we provide an initial assessment of variability in the cellular response to GC treatment by profiling gene expression and protein secretion in 114 EBV-transformed B lymphocytes of African and European ancestry. We found that genetic variation affects the response of nearby genes and exhibits distinctive patterns of genotype-treatment interactions, with genotypic effects evident in either only GC-treated or only control-treated conditions. Using a novel statistical framework, we identified interactions that influence the expression of 26 genes known to play central roles in GC-related pathways (e.g. NQO1, AIRE, and SGK1) and that influence the secretion of IL6.

0 Bookmarks
 · 
105 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Researchers have identified thousands of loci involved in complex traits and drug response. However, in most cases they only explain a small proportion of the heritability of the trait. Among different strategies conducted to identify this 'missing heritability', here we illustrate the importance of complex gene-environment interactions using findings regarding the role of leukotrienes on the bronchodilator response to albuterol in Latino asthmatics. Patients managing their asthma with leukotriene-modifying medication presented higher increases in the bronchodilator response to albuterol. Moreover, interactions between genes responsible for leukotriene production were associated with a decreased risk of asthma. Combining genetic and pharmacologic effects, leukotriene-modifying users carrying certain combinations of alleles presented higher improvements in lung function after bronchodilator administration. Genes and drugs act at different orders of interaction (from individual effects to gene-gene-drug-drug interactions) and population-specific effects have to be considered. These results may be extrapolated to other complex phenotypes.
    Pharmacogenomics 06/2013; 14(8):923-9. · 3.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene-environment interactions have long been recognized as a fundamental concept in evolutionary, quantitative, and medical genetics. In the genomics era, study of how environment and genome interact to shape gene expression variation is relevant to understanding the genetic architecture of complex phenotypes. While genetic analysis of gene expression variation focused on main effects, little is known about the extent of interaction effects implicating regulatory variants and their consequences on transcriptional variation. Here we survey the current state of the concept of transcriptional gene-environment interactions and discuss its utility for mapping disease phenotypes in light of the insights gained from genome-wide association studies of gene expression.
    Frontiers in Genetics 01/2012; 3:228.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although we generally experience our bodies as being biologically stable across time and situations, an emerging field of research is demonstrating that external social conditions, especially our subjective perceptions of those conditions, can influence our most basic internal biological processes-namely, the expression of our genes. This research on human social genomics has begun to identify the types of genes that are subject to social-environmental regulation, the neural and molecular mechanisms that mediate the effects of social processes on gene expression, and the genetic polymorphisms that moderate individual differences in genomic sensitivity to social context. The molecular models resulting from this research provide new opportunities for understanding how social and genetic factors interact to shape complex behavioral phenotypes and susceptibility to disease. This research also sheds new light on the evolution of the human genome and challenges the fundamental belief that our molecular makeup is relatively stable and impermeable to social-environmental influence.
    Clinical psychological science. 07/2013; 1(3):331-348.

Full-text (3 Sources)

View
18 Downloads
Available from
Jun 1, 2014