Article

A Systematic Screen for Tube Morphogenesis and Branching Genes in the Drosophila Tracheal System

Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
PLoS Genetics (Impact Factor: 8.17). 07/2011; 7(7):e1002087. DOI: 10.1371/journal.pgen.1002087
Source: PubMed

ABSTRACT Many signaling proteins and transcription factors that induce and pattern organs have been identified, but relatively few of the downstream effectors that execute morphogenesis programs. Because such morphogenesis genes may function in many organs and developmental processes, mutations in them are expected to be pleiotropic and hence ignored or discarded in most standard genetic screens. Here we describe a systematic screen designed to identify all Drosophila third chromosome genes (∼40% of the genome) that function in development of the tracheal system, a tubular respiratory organ that provides a paradigm for branching morphogenesis. To identify potentially pleiotropic morphogenesis genes, the screen included analysis of marked clones of homozygous mutant tracheal cells in heterozygous animals, plus a secondary screen to exclude mutations in general "house-keeping" genes. From a collection including more than 5,000 lethal mutations, we identified 133 mutations representing ∼70 or more genes that subdivide the tracheal terminal branching program into six genetically separable steps, a previously established cell specification step plus five major morphogenesis and maturation steps: branching, growth, tubulogenesis, gas-filling, and maintenance. Molecular identification of 14 of the 70 genes demonstrates that they include six previously known tracheal genes, each with a novel function revealed by clonal analysis, and two well-known growth suppressors that establish an integral role for cell growth control in branching morphogenesis. The rest are new tracheal genes that function in morphogenesis and maturation, many through cytoskeletal and secretory pathways. The results suggest systematic genetic screens that include clonal analysis can elucidate the full organogenesis program and that over 200 patterning and morphogenesis genes are required to build even a relatively simple organ such as the Drosophila tracheal system.

Download full-text

Full-text

Available from: Amin S Ghabrial, Jul 07, 2014
1 Follower
 · 
139 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A central challenge of developmental and evolutionary biology is to explain how anatomy is encoded in the genome. Anatomy emerges progressively during embryonic development, as a consequence of morphogenetic processes. The specialized properties of embryonic cells and tissues that drive morphogenesis, like other specialized properties of cells, arise as a consequence of differential gene expression. Recently, gene regulatory networks (GRNs) have proven to be powerful conceptual and experimental tools for analyzing the genetic control and evolution of developmental processes. A major current goal is to link these transcriptional networks directly to morphogenetic processes. This review highlights three experimental models (sea urchin skeletogenesis, ascidian notochord morphogenesis, and the formation of somatic muscles in Drosophila) that are currently being used to analyze the genetic control of anatomy by integrating information of several important kinds: 1) morphogenetic mechanisms at the molecular, cellular and tissue levels that are responsible for shaping a specific anatomical feature, 2) the underlying GRN circuitry deployed in the relevant cells, and 3) modifications to gene regulatory circuitry that have accompanied evolutionary changes in the anatomical feature. © 2013 Wiley Periodicals, Inc.
    genesis 06/2013; 51(6). DOI:10.1002/dvg.22380 · 2.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Seamless tubes form intracellularly without cell-cell or autocellular junctions. Such tubes have been described across phyla, but remain mysterious despite their simple architecture. In Drosophila, seamless tubes are found within tracheal terminal cells, which have dozens of branched protrusions extending hundreds of micrometres. We find that mutations in multiple components of the dynein motor complex block seamless tube growth, raising the possibility that the lumenal membrane forms through minus-end-directed transport of apical membrane components along microtubules. Growth of seamless tubes is polarized along the proximodistal axis by Rab35 and its apical membrane-localized GAP, Whacked. Strikingly, loss of whacked (or constitutive activation of Rab35) leads to tube overgrowth at terminal cell branch tips, whereas overexpression of Whacked (or dominant-negative Rab35) causes formation of ectopic tubes surrounding the terminal cell nucleus. Thus, vesicle trafficking has key roles in making and shaping seamless tubes.
    Nature Cell Biology 03/2012; 14(4):386-93. DOI:10.1038/ncb2454 · 20.06 Impact Factor
  • Source
    Embryogenesis, 04/2012; , ISBN: 978-953-51-0466-7