Activation of cAMP signaling interferes with stress-induced p53 accumulation in ALL-derived cells by promoting the interaction between p53 and HDM2.

Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
Neoplasia (New York, N.Y.) (Impact Factor: 5.48). 07/2011; 13(7):653-63.
Source: PubMed

ABSTRACT The tumor suppressor p53 provides an important barrier to the initiation and maintenance of cancers. As a consequence, p53 function must be inactivated for a tumor to develop. This is achieved by mutation in approximately 50% of cases and probably by functional inactivation in the remaining cases. We have previously shown that the second messenger cAMP can inhibit DNA damage-induced wild-type p53 accumulation in acute lymphoblastic leukemia cells, leading to a profound reduction of their apoptotic response. In the present article, we provide a mechanistic insight into the regulation of p53 levels by cAMP. We show that increased levels of cAMP augment the binding of p53 to its negative regulator HDM2, overriding the DNA damage-induced dissociation of p53 from HDM2. This results in maintained levels of p53 ubiquitination and proteasomal degradation, which in turn counteracts the DNA damage-induced stabilization of the p53 protein. The apoptosis inhibitory effect of cAMP is further shown to depend on this effect on p53 levels. These findings potentially implicate deregulation of cAMP signaling as a candidate mechanism used by transformed cells to quench the p53 response while retaining wild-type p53.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The p53 tumor suppressor protein is a short-lived protein, which is stabilized in response to cellular stress. The ubiquitination and degradation of p53 are largely controlled by Mdm2, an oncogenic E3 ligase. Stress signals lead to p53 stabilization either by induction of covalent modifications in Mdm2 and p53, or through altered protein-protein interactions. Mdm2 also harbors a post-ubiquitination function, probably enabling efficient targeting of ubiquitinated p53 to the proteasome. p53 ubiquitination is associated with its export from the nucleus into the cytoplasm. However, the exact site of degradation of p53 is presently under debate. p53 may be targeted by other E3 ligases besides Mdm2, as well as by non-proteasomal mechanisms. Despite extensive information about p53 degradation, many important aspects remain unresolved.
    Seminars in Cancer Biology 03/2003; 13(1):49-58. · 7.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The tumor suppressor p53 exerts its anti-neoplastic activity primarily through the induction of apoptosis. We found that cytosolic localization of endogenous wild-type or trans-activation-deficient p53 was necessary and sufficient for apoptosis. p53 directly activated the proapoptotic Bcl-2 protein Bax in the absence of other proteins to permeabilize mitochondria and engage the apoptotic program. p53 also released both proapoptotic multidomain proteins and BH3-only proteins [Proapoptotic Bcl-2 family proteins that share only the third Bcl-2 homology domain (BH3)] that were sequestered by Bcl-xL. The transcription-independent activation of Bax by p53 occurred with similar kinetics and concentrations to those produced by activated Bid. We propose that when p53 accumulates in the cytosol, it can function analogously to the BH3-only subset of proapoptotic Bcl-2 proteins to activate Bax and trigger apoptosis.
    Science 03/2004; 303(5660):1010-4. · 31.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the tumor suppressor gene TP53 are frequent in most human cancers. Comparison of the mutation patterns in different cancers may reveal clues on the natural history of the disease. Over the past 10 years, several databases of TP53 mutations have been developed. The most extensive of these databases is maintained and developed at the International Agency for Research on Cancer. The database compiles all mutations (somatic and inherited), as well as polymorphisms, that have been reported in the published literature since 1989. The IARC TP53 mutation dataset is the largest dataset available on the variations of any human gene. The database is available at In this paper, we describe recent developments of the database. These developments include restructuring of the database, which is now patient-centered, with more detailed annotations on the patient (carcinogen exposure, virus infection, genetic background). In addition, a new on-line application to retrieve somatic mutation data and analyze mutation patterns is now available. We also discuss limitations on the use of the database and provide recommendations to users.
    Human Mutation 07/2002; 19(6):607-14. · 5.21 Impact Factor


Available from