Clinical manifestations of mutations in RAS and related intracellular signal transduction factors.

Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany.
Current opinion in pediatrics (Impact Factor: 2.74). 08/2011; 23(4):443-51. DOI: 10.1097/MOP.0b013e32834881dd
Source: PubMed

ABSTRACT Recent advances in molecular genetic research have led to the definition of the new group of genetic syndromes, the RAS-mitogen-activated protein kinase (MAPK) pathway disorders or 'RASopathies'. They comprise Noonan syndrome and related disorders (cardio-facio-cutaneous and Costello syndromes), as well as neurofibromatosis type 1. This review summarizes the recent literature with a special focus on genotype-phenotype correlations.
Although the picture is still incomplete, and additional genes are likely to exist, the underlying genetic alteration can now be found in a large majority of patients with a RASopathy phenotype. The most recently discovered novel genes for Noonan syndrome or Noonan syndrome-like disorders, NRAS, SHOC2, and CBL, account for small fractions of the patient population. The increasing knowledge about the spectrum of gene mutations and associated clinical manifestations has led to a refinement of genotype-phenotype correlations. Recent studies have added new insights into tumor predisposition and prenatal manifestations. Model systems are being developed to investigate innovative treatment approaches.
Constitutional overactivation at various levels of the RAS-MAPK pathway causes overlapping syndromes, comprising characteristic facial features, cardiac defects, cutaneous abnormalities, growth deficit, neurocognitive delay, and predisposition to malignancies. Each syndrome also exhibits unique features that probably reflect genotype-related specific biological effects.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: In Noonan syndrome (NS) 30-50% of subjects show cognitive deficits of unknown etiology and with no known treatment. Here, we report that knock-in mice expressing either of two NS-associated mutations in Ptpn11, which encodes the nonreceptor protein tyrosine phosphatase Shp2, show hippocampal-dependent impairments in spatial learning and deficits in hippocampal long-term potentiation (LTP). In addition, viral overexpression of an NS-associated allele PTPN11(D61G) in adult mouse hippocampus results in increased baseline excitatory synaptic function and deficits in LTP and spatial learning, which can be reversed by a mitogen-activated protein kinase kinase (MEK) inhibitor. Furthermore, brief treatment with lovastatin reduces activation of the GTPase Ras-extracellular signal-related kinase (Erk) pathway in the brain and normalizes deficits in LTP and learning in adult Ptpn11(D61G/+) mice. Our results demonstrate that increased basal Erk activity and corresponding baseline increases in excitatory synaptic function are responsible for the LTP impairments and, consequently, the learning deficits in mouse models of NS. These data also suggest that lovastatin or MEK inhibitors may be useful for treating the cognitive deficits in NS.
    Nature Neuroscience 11/2014; DOI:10.1038/nn.3863 · 14.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this article, we give an update on recent findings regarding molecular pathology in cutaneous melanocytic tumors. The focus lies on use of genetics in the diagnosis of distinct subtypes of spitzoid tumors that are often characterized by specific phenotypic-genotypic alterations that can frequently be recognized by adequate histological examination. Typical illustrating cases are given in order to increase recognition of these lesions in daily dermatopathology practice. New molecular findings in the pathogenesis of congenital melanocytic tumors and neurocutaneous melanosis are reviewed. In addition, use of mutation analysis in the differential diagnosis of melanoma metastasis is discussed. Finally, application of mutation analysis in targeted therapy in advanced melanoma with advantages of new techniques such as next generation sequencing is described.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gain-of-function alterations in several components and modulators of the Ras-MAPK pathway lead to dysregulation of the pathway and cause a broad spectrum of autosomal dominant developmental disorders, collectively known as RASopathies. These findings demonstrate the importance of tight multilevel Ras regulation to safeguard signalling output and prevent aberrant activity. We have recently identified ezrin as a novel regulatory element required for Ras activation. Homozygosity mapping and exome sequencing have now revealed the first presumably disease-causing variant in the coding gene EZR in two siblings with a profound intellectual disability. Localization and membrane targeting of the altered ezrin protein appeared normal but molecular modelling suggested protein interaction surfaces to be disturbed. Functional analysis revealed that the altered ezrin protein is no longer able to bind Ras and facilitate its activation. Furthermore, expression of the altered ezrin protein in different cell lines resulted in abnormal cellular processes, including reduced proliferation and neuritogenesis, thus revealing a possible mechanism for its phenotype in humans. To our knowledge this is the first report of an autosomal recessively inherited loss-of-function mutation causing reduced Ras activity and thus extends and complements the pathogenicity spectrum of known Ras-MAPK pathway disturbances.This article is protected by copyright. All rights reserved
    Human Mutation 12/2014; 36(2). DOI:10.1002/humu.22737 · 5.05 Impact Factor