Butin (7,3′,4′-Trihydroxydihydroflavone) Reduces Oxidative Stress-Induced Cell Death via Inhibition of the Mitochondria-Dependent Apoptotic Pathway

School of Medicine and Applied Radiological Science Research Institute, Jeju National University, Jeju-si 690-756, Korea
International Journal of Molecular Sciences (Impact Factor: 2.86). 12/2011; 12(6):3871-87. DOI: 10.3390/ijms12063871
Source: PubMed


Recently, we demonstrated that butin (7,3',4'-trihydroxydihydroflavone) protected cells against hydrogen peroxide (H(2)O(2))-induced apoptosis by: (1) scavenging reactive oxygen species (ROS), activating antioxidant enzymes such superoxide dismutase and catalase; (2) decreasing oxidative stress-induced 8-hydroxy-2'-deoxyguanosine levels via activation of oxoguanine glycosylase 1, and (3), reducing oxidative stress-induced mitochondrial dysfunction. The objective of this study was to determine the cytoprotective effects of butin on oxidative stress-induced mitochondria-dependent apoptosis, and possible mechanisms involved. Butin significantly reduced H(2)O(2)-induced loss of mitochondrial membrane potential as determined by confocal image analysis and flow cytometry, alterations in Bcl-2 family proteins such as decrease in Bcl-2 expression and increase in Bax and phospho Bcl-2 expression, release of cytochrome c from mitochondria into the cytosol and activation of caspases 9 and 3. Furthermore, the anti-apoptotic effect of butin was exerted via inhibition of mitogen-activated protein kinase kinase-4, c-Jun NH(2)-terminal kinase (JNK) and activator protein-1 cascades induced by H(2)O(2) treatment. Finally, butin exhibited protective effects against H(2)O(2)-induced apoptosis, as demonstrated by decreased apoptotic bodies, sub-G(1) hypodiploid cells and DNA fragmentation. Taken together, the protective effects of butin against H(2)O(2)-induced apoptosis were exerted via blockade of membrane potential depolarization, inhibition of the JNK pathway and mitochondria-involved caspase-dependent apoptotic pathway.

Download full-text


Available from: Ki Cheon Kim, Apr 16, 2015
23 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Butin (7,3',4'-trihydroxydihydroflavone), a flavonoid with antioxidant activity, was recently reported to protect cells against H2O2-induced apoptosis, oxidative DNA damage and oxidative mitochondrial dysfunction. The objective of the present study was to elucidate the mechanism by which butin protects mitochondria. The antioxidant function of manganese superoxide dismutase (Mn SOD) is important in preventing oxidative stress. While exposure to H2O2 reduced the expression of Mn SOD in Chinese hamster lung fibroblast (V79-4), the addition of butin restored Mn SOD expression at both the mRNA and protein levels, resulting in increased Mn SOD activity. The transcription factor NF-E2-related factor 2 (Nrf2) regulates Mn SOD gene expression by binding to the antioxidant responsive element (ARE). Butin enhanced the nuclear translocation and ARE-binding activity of Nrf2, which was decreased by H2O2. The siRNA-mediated knockdown of Nrf2 attenuated butin-induced Mn SOD expression and activity. Further, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB, Akt) contributed to the ARE-driven Mn SOD expression. Butin activated PI3K/Akt and exposure to either LY294002 (a PI3K inhibitor), Akt inhibitor IV (an Akt-specific inhibitor), or Akt siRNA suppressed the butin-induced activation of Nrf2, resulting in decreased Mn SOD expression and activity. Finally, the cytoprotective effect of butin against H2O2-induced cell damage was suppressed by the siRNA-mediated knockdown of Mn SOD. These studies demonstrate that butin attenuates oxidative stress by activating Nrf2-mediated Mn SOD induction via the PI3K/Akt signaling pathway.
    Journal of Cellular Biochemistry 06/2012; 113(6):1987-97. DOI:10.1002/jcb.24068 · 3.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A new and efficient method for ortho-amidoalkylation of phenols via Mannich-type condensation with formaldehyde and lactams using recyclable solid acid catalyst is described. This is the first report for ortho-amidoalkylation of phenols by lactams via Mannich-type condensation. LC-ESI-MS/MS based mechanistic study revealed that reaction proceeds through o-quinone methide (o-QM) and an oxazine intermediate via tandem Knoevenagel condensation, formal [4 + 2]-Diels-Alder cycloaddition and acid catalyzed oxazine ring-opening.
    The Journal of Organic Chemistry 09/2012; 77(19):8821-7. DOI:10.1021/jo3017132 · 4.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hydrogen peroxide (H2O2) can induce cell damage by generating reactive oxygen species (ROS), resulting in DNA damage and cell death. The aim of this study is to elucidate the protective effects of fisetin (3,7,3',4',-tetrahydroxy flavone) against H2O2-induced cell damage. Fisetin reduced the level of superoxide anion, hydroxyl radical in cell free system, and intracellular ROS generated by H2O2. Moreover, fisetin protected against H2O2-induced membrane lipid peroxidation, cellular DNA damage, and protein carbonylation, which are the primary cellular outcomes of H2O2 treatment. Furthermore, fisetin increased the level of reduced glutathione (GSH) and expression of glutamate-cysteine ligase catalytic subunit, which is decreased by H2O2. Conversely, a GSH inhibitor abolished the cytoprotective effect of fisetin against H2O2-induced cells damage. Taken together, our results suggest that fisetin protects against H2O2-induced cell damage by inhibiting ROS generation, thereby maintaining the protective role of the cellular GSH system.
    In Vitro Cellular & Developmental Biology - Animal 08/2013; 50(1). DOI:10.1007/s11626-013-9681-6 · 1.15 Impact Factor