Altered Mitochondrial Dynamics Contributes to Endothelial Dysfunction in Diabetes Mellitus

Boston University School of Medicine, 88 East Newton Street, Boston, MA 02118., USA.
Circulation (Impact Factor: 14.43). 07/2011; 124(4):444-53. DOI: 10.1161/CIRCULATIONAHA.110.014506
Source: PubMed

ABSTRACT Endothelial dysfunction contributes to the development of atherosclerosis in patients with diabetes mellitus, but the mechanisms of endothelial dysfunction in this setting are incompletely understood. Recent studies have shown altered mitochondrial dynamics in diabetes mellitus with increased mitochondrial fission and production of reactive oxygen species. We investigated the contribution of altered dynamics to endothelial dysfunction in diabetes mellitus.
We observed mitochondrial fragmentation (P=0.002) and increased expression of fission-1 protein (Fis1; P<0.0001) in venous endothelial cells freshly isolated from patients with diabetes mellitus (n=10) compared with healthy control subjects (n=9). In cultured human aortic endothelial cells exposed to 30 mmol/L glucose, we observed a similar loss of mitochondrial networks and increased expression of Fis1 and dynamin-related protein-1 (Drp1), proteins required for mitochondrial fission. Altered mitochondrial dynamics was associated with increased mitochondrial reactive oxygen species production and a marked impairment of agonist-stimulated activation of endothelial nitric oxide synthase and cGMP production. Silencing Fis1 or Drp1 expression with siRNA blunted high glucose-induced alterations in mitochondrial networks, reactive oxygen species production, endothelial nitric oxide synthase activation, and cGMP production. An intracellular reactive oxygen species scavenger provided no additional benefit, suggesting that increased mitochondrial fission may impair endothelial function via increased reactive oxygen species.
These findings implicate increased mitochondrial fission as a contributing mechanism for endothelial dysfunction in diabetic states.

Download full-text


Available from: Mai-Ann Duess, Sep 27, 2015
50 Reads
  • Source
    • "For example, exposure of ECs to free fatty acids, which upregulate in patients with metabolic syndrome, increases mROS (Du et al., 2006). Otherwise, hyperglycemia changes mitochondrial dynamics and increases mROS in ECs, while the normalization of blood sugar inhibits the progression of vascular damage (Nishikawa et al., 2000; Yu et al., 2006; Shenouda et al., 2011). ROS produced in the vascular microenvironment causes mitochondrial damage and dysfunction , which in turn amplifies this effect partly due to reduced ROS buffering capacity. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria are perhaps the most sophisticated and dynamic responsive sensing systems in eukaryotic cells. The role of mitochondria goes beyond their capacity to create molecular fuel and includes the generation of reactive oxygen species, the regulation of calcium, and the activation of cell death. In endothelial cells, mitochondria have a profound impact on cellular function under both healthy and diseased conditions. In this review, we summarize the basic functions of mitochondria in endothelial cells and discuss the roles of mitochondria in endothelial dysfunction and vascular diseases, including atherosclerosis, diabetic vascular dysfunction, pulmonary artery hypertension, and hypertension. Finally, the potential therapeutic strategies to improve mitochondrial function in endothelial cells and vascular diseases are also discussed, with a focus on mitochondrial-targeted antioxidants and calorie restriction.
    Frontiers in Physiology 05/2014; 5:175. DOI:10.3389/fphys.2014.00175 · 3.53 Impact Factor
  • Source
    • "Because numerous studies have shown that HG-induced oxidative stress causes mitochondrial abnormalities, including excess superoxide generation [2], [23], [24], we tested the effect of NO-NIF on HG-induced mitochondrial ROS in vitro. NO-NIF treatment did not significantly attenuate the mitochondrial ROS generation induced by HG (Figure 4D) in HGECs. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Diabetic nephropathy (DN) is the major cause of end-stage renal failure. Oxidative stress is implicated in the pathogenesis of DN. Nitrosonifedipine (NO-NIF) is a weak calcium channel blocker that is converted from nifedipine under light exposure. Recently, we reported that NO-NIF has potential as a novel antioxidant with radical scavenging abilities and has the capacity to treat vascular dysfunction by exerting an endothelial protective effect. In the present study, we extended these findings by evaluating the efficacy of NO-NIF against DN and by clarifying the mechanisms of its antioxidative effect. In a model of type 2 DN (established in KKAy mice), NO-NIF administration reduced albuminuria and proteinuria as well as glomerular expansion without affecting glucose metabolism or systolic blood pressure. NO-NIF also suppressed renal and systemic oxidative stress and decreased the expression of intercellular adhesion molecule (ICAM)-1, a marker of endothelial cell injury, in the glomeruli of the KKAy mice. Similarly, NO-NIF reduced albuminuria, oxidative stress, and ICAM-1 expression in endothelial nitric oxide synthase (eNOS) knockout mice. Moreover, NO-NIF suppressed urinary angiotensinogen (AGT) excretion and intrarenal AGT protein expression in proximal tubular cells in the KKAy mice. On the other hand, hyperglycemia-induced mitochondrial superoxide production was not attenuated by NO-NIF in cultured endothelial cells. These findings suggest that NO-NIF prevents the progression of type 2 DN associated with endothelial dysfunction through selective antioxidative effects.
    PLoS ONE 01/2014; 9(1):e86335. DOI:10.1371/journal.pone.0086335 · 3.23 Impact Factor
  • Source
    • "Mitochondria in fibroblasts are usually long filaments (1-10 μm in length with a fairly constant diameter of ∼700 nm), whereas in hepatocytes mitochondria are more uniformly spheres or ovoids [9]. In native vascular smooth muscle, mitochondria are ovoid or rod-shaped organelles [10,11,12,13], whereas in the endothelium a tubular mitochondrial network exists [14]. Even within individual cells, mitochondrial structure varies. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The diversity of mitochondrial arrangements, which arise from the organelle being static or moving, or fusing and dividing in a dynamically reshaping network, is only beginning to be appreciated. While significant progress has been made in understanding the proteins that reorganise mitochondria, the physiological significance of the various arrangements is poorly understood. The lack of understanding may occur partly because mitochondrial morphology is studied most often in cultured cells. The simple anatomy of cultured cells presents an attractive model for visualizing mitochondrial behaviour but contrasts with the complexity of native cells in which elaborate mitochondrial movements and morphologies may not occur. Mitochondrial changes may take place in native cells (in response to stress and proliferation), but over a slow time-course and the cellular function contributed is unclear. To determine the role mitochondrial arrangements play in cell function, a crucial first step is characterisation of the interactions among mitochondrial components. Three aspects of mitochondrial behaviour are described in this review: (1) morphology, (2) motion and (3) rapid shape changes. The proposed physiological roles to which various mitochondrial arrangements contribute and difficulties in interpreting some of the physiological conclusions are also outlined. © 2013 S. Karger AG, Basel.
    Journal of Vascular Research 07/2013; 50(5):357-371. DOI:10.1159/000353883 · 2.90 Impact Factor
Show more