Article

Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus.

Boston University School of Medicine, 88 East Newton Street, Boston, MA 02118., USA.
Circulation (Impact Factor: 15.2). 07/2011; 124(4):444-53. DOI:10.1161/CIRCULATIONAHA.110.014506
Source: PubMed

ABSTRACT Endothelial dysfunction contributes to the development of atherosclerosis in patients with diabetes mellitus, but the mechanisms of endothelial dysfunction in this setting are incompletely understood. Recent studies have shown altered mitochondrial dynamics in diabetes mellitus with increased mitochondrial fission and production of reactive oxygen species. We investigated the contribution of altered dynamics to endothelial dysfunction in diabetes mellitus.
We observed mitochondrial fragmentation (P=0.002) and increased expression of fission-1 protein (Fis1; P<0.0001) in venous endothelial cells freshly isolated from patients with diabetes mellitus (n=10) compared with healthy control subjects (n=9). In cultured human aortic endothelial cells exposed to 30 mmol/L glucose, we observed a similar loss of mitochondrial networks and increased expression of Fis1 and dynamin-related protein-1 (Drp1), proteins required for mitochondrial fission. Altered mitochondrial dynamics was associated with increased mitochondrial reactive oxygen species production and a marked impairment of agonist-stimulated activation of endothelial nitric oxide synthase and cGMP production. Silencing Fis1 or Drp1 expression with siRNA blunted high glucose-induced alterations in mitochondrial networks, reactive oxygen species production, endothelial nitric oxide synthase activation, and cGMP production. An intracellular reactive oxygen species scavenger provided no additional benefit, suggesting that increased mitochondrial fission may impair endothelial function via increased reactive oxygen species.
These findings implicate increased mitochondrial fission as a contributing mechanism for endothelial dysfunction in diabetic states.

0 0
 · 
0 Bookmarks
 · 
99 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Diabetic nephropathy (DN) is the major cause of end-stage renal failure. Oxidative stress is implicated in the pathogenesis of DN. Nitrosonifedipine (NO-NIF) is a weak calcium channel blocker that is converted from nifedipine under light exposure. Recently, we reported that NO-NIF has potential as a novel antioxidant with radical scavenging abilities and has the capacity to treat vascular dysfunction by exerting an endothelial protective effect. In the present study, we extended these findings by evaluating the efficacy of NO-NIF against DN and by clarifying the mechanisms of its antioxidative effect. In a model of type 2 DN (established in KKAy mice), NO-NIF administration reduced albuminuria and proteinuria as well as glomerular expansion without affecting glucose metabolism or systolic blood pressure. NO-NIF also suppressed renal and systemic oxidative stress and decreased the expression of intercellular adhesion molecule (ICAM)-1, a marker of endothelial cell injury, in the glomeruli of the KKAy mice. Similarly, NO-NIF reduced albuminuria, oxidative stress, and ICAM-1 expression in endothelial nitric oxide synthase (eNOS) knockout mice. Moreover, NO-NIF suppressed urinary angiotensinogen (AGT) excretion and intrarenal AGT protein expression in proximal tubular cells in the KKAy mice. On the other hand, hyperglycemia-induced mitochondrial superoxide production was not attenuated by NO-NIF in cultured endothelial cells. These findings suggest that NO-NIF prevents the progression of type 2 DN associated with endothelial dysfunction through selective antioxidative effects.
    PLoS ONE 01/2014; 9(1):e86335. · 3.73 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Recent studies have shown mitochondrial dysfunction and increased production of reactive oxygen species in peripheral blood mononuclear cells (PBMCs) and endothelial cells from patients with diabetes mellitus. Mitochondria oxygen consumption is coupled to adenosine triphosphate (ATP) production and also occurs in an uncoupled fashion during formation of reactive oxygen species by components of the electron transport chain and other enzymatic sites. We therefore hypothesized that diabetes would be associated with higher total and uncoupled oxygen consumption in PBMCs that would correlate with endothelial dysfunction. We developed a method to measure oxygen consumption in freshly isolated PBMCs and applied it to 26 patients with type 2 diabetes mellitus and 28 non-diabetic controls. Basal (192±47 vs 161±44 pmoles/min, p=0.01), uncoupled (64±16 vs 53±13 pmoles/min, p=0.007), and maximal (795±87 vs 715±128 pmoles/min, p=0.01) oxygen consumption rates were higher in diabetic patients compared to controls. There were no significant correlations between oxygen consumption rates and endothelium-dependent flow-mediated dilation measured by vascular ultrasound. Non-endothelium-dependent nitroglycerin-mediated dilation was lower in diabetics (10.1±6.6 vs 15.8±4.8%, p=0.03) and correlated with maximal oxygen consumption (r = -0.64, p=0.001). In summary, we found that diabetes mellitus is associated with a pattern of mitochondrial oxygen consumption consistent with higher production of reactive oxygen species. The correlation between oxygen consumption and nitroglycerin-mediated dilation may suggest a link between mitochondrial dysfunction and vascular smooth muscle cell dysfunction that merits further study. Finally, the described method may have utility for the assessment of mitochondrial function in larger scale observational and interventional studies in humans.
    Vascular Medicine 02/2014; 19(1):67-74. · 1.62 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Emerging evidence indicates exercise training could mediate mitochondrial quality control through the improvement of mitochondrial dynamics. Ginsenoside Rg3 (Rg3), one of the active ingredients in Panax ginseng, is well known in herbal medicine as a tonic and restorative agent. However, the molecular mechanism underlying the beneficial effects of Rg3 has been elusive. In the present study, we compared the effects of Rg3 administration with aerobic exercise on mitochondrial adaptation in cardiac muscle tissue of Sprague-Dawley (SD) rats. Three groups of SD rats were studied: (1) sedentary control, (2) Rg3-treated and (3) aerobic exercise trained. Both aerobic exercise training and Rg3 supplementation enhanced peroxisome proliferator-activated receptor coactivator 1 alpha (PGC-1α) and nuclear factor-E2-related factor 2 (Nrf2) protein levels in cardiac muscle. The activation of PGC-1α led to increased mRNA levels of mitochondrial transcription factor A (Tfam) and nuclear related factor 1(Nrf1), these changes were accompanied by increases in mitochondrial DNA copy number and complex protein levels, while activation of Nrf2 increased levels of phase II detoxifying enzymes, including nicotinamide adenine dinucleotide phosphate:quinone oxidoreductase 1(NQO1), superoxide dismutase (MnSOD) and catalase. Aerobic exercise also enhanced mitochondrial autophagy pathway activity, including increased conversion of LC3-I to LC3-II and greater expression of beclin1 and autophagy-related protein 7 (ATG7), these effects of aerobic exercise are comparable to that of Rg3. These results demonstrate that Rg3 mimics improved cardiac adaptations to exercise by regulating mitochondria dynamic remodeling and enhancing the quantity and quality of mitochondria.
    Biochemical and Biophysical Research Communications 10/2013; · 2.41 Impact Factor

Full-text (2 Sources)

View
17 Downloads
Available from
Sep 9, 2013