Detailed ab initio first-principles study of the magnetic anisotropy in a family of trigonal pyramidal iron(II) pyrrolide complexes.

Institute for Physical and Theoretical Chemistry, University of Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany.
Inorganic Chemistry (Impact Factor: 4.79). 08/2011; 50(16):7460-77. DOI: 10.1021/ic200196k
Source: PubMed

ABSTRACT A theoretical, computational, and conceptual framework for the interpretation and prediction of the magnetic anisotropy of transition metal complexes with orbitally degenerate or orbitally nearly degenerate ground states is explored. The treatment is based on complete active space self-consistent field (CASSCF) wave functions in conjunction with N-electron valence perturbation theory (NEVPT2) and quasidegenerate perturbation theory (QDPT) for treatment of magnetic field- and spin-dependent relativistic effects. The methodology is applied to a series of Fe(II) complexes in ligand fields of almost trigonal pyramidal symmetry as provided by several variants of the tris-pyrrolylmethyl amine ligand (tpa). These systems have recently attracted much attention as mononuclear single-molecule magnet (SMM) complexes. This study aims to establish how the ligand field can be fine tuned in order to maximize the magnetic anisotropy barrier. In trigonal ligand fields high-spin Fe(II) complexes adopt an orbitally degenerate (5)E ground state with strong in-state spin-orbit coupling (SOC). We study the competing effects of SOC and the (5)E⊗ε multimode Jahn-Teller effect as a function of the peripheral substituents on the tpa ligand. These subtle distortions were found to have a significant effect on the magnetic anisotropy. Using a rigorous treatment of all spin multiplets arising from the triplet and quintet states in the d(6) configuration the parameters of the effective spin-Hamiltonian (SH) approach were predicted from first principles. Being based on a nonperturbative approach we investigate under which conditions the SH approach is valid and what terms need to be retained. It is demonstrated that already tiny geometric distortions observed in the crystal structures of four structurally and magnetically well-documented systems, reported recently, i.e., [Fe(tpa(R))](-) (R = tert-butyl, Tbu (1), mesityl, Mes (2), phenyl, Ph (3), and 2,6-difluorophenyl, Dfp (4), are enough to lead to five lowest and thermally accessible spin sublevels described sufficiently well by S = 2 SH provided that it is extended with one fourth order anisotropy term. Using this most elementary parametrization that is consistent with the actual physics, the reported magnetization data for the target systems were reinterpreted and found to be in good agreement with the ab initio results. The multiplet energies from the ab initio calculations have been fitted with remarkable consistency using a ligand field (angular overlap) model (ab initio ligand field, AILFT). This allows for determination of bonding parameters and quantitatively demonstrates the correlation between increasingly negative D values and changes in the σ-bond strength induced by the peripheral ligands. In fact, the sigma-bonding capacity (and hence the Lewis basicity) of the ligand decreases along the series 1 > 2 > 3 > 4.

  • Nature Chemistry 06/2013; 5(7):556-557. · 21.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The determination of anisotropic magnetic parameters is a task of both experimental and theoretical interest. The added value of theoretical calculations can be crucial for analyzing experimental data by (i) allowing assessment of the validity of the phenomenological spin Hamiltonians, (ii) allowing discussion of the values of parameters extracted from experiments, and (iii) proposing rationalizations and magneto-structural correlations to better understand the relations between geometry, electronic structure, and properties. In this review, we discuss the model Hamiltonians that are used to describe magnetic properties, the computational approaches that can be used to compute magnetic parameters, and review their applications to transition metal and (to a lesser extent) lanthanide based complexes. Perspectives concerning current methodological challenges will then be presented, and finally the need for further joint experimental/theoretical efforts will be underlined.
    Physical Chemistry Chemical Physics 10/2013; · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Single-molecule magnets that contain one spin centre may represent the smallest possible unit for spin-based computational devices. Such applications, however, require the realization of molecules with a substantial energy barrier for spin inversion, achieved through a large axial magnetic anisotropy. Recently, significant progress has been made in this regard by using lanthanide centres such as terbium(III) and dysprosium(III), whose anisotropy can lead to extremely high relaxation barriers. We contend that similar effects should be achievable with transition metals by maintaining a low coordination number to restrict the magnitude of the d-orbital ligand-field splitting energy (which tends to hinder the development of large anisotropies). Herein we report the first two-coordinate complex of iron(I), [Fe(C(SiMe3)3)2](-), for which alternating current magnetic susceptibility measurements reveal slow magnetic relaxation below 29 K in a zero applied direct-current field. This S = complex exhibits an effective spin-reversal barrier of Ueff = 226(4) cm(-1), the largest yet observed for a single-molecule magnet based on a transition metal, and displays magnetic blocking below 4.5 K.
    Nature Chemistry 05/2013; 5(7):577-581. · 21.76 Impact Factor

Full-text (3 Sources)

Available from
Oct 29, 2014