Article

Spatial patterns of mercury in macroinvertebrates and fishes from streams of two contrasting forested landscapes in the eastern United States

US Geological Survey, Troy, NY 12180, USA.
Ecotoxicology (Impact Factor: 2.5). 07/2011; 20(7):1530-42. DOI: 10.1007/s10646-011-0719-9
Source: PubMed

ABSTRACT Controls on mercury bioaccumulation in lotic ecosystems are not well understood. During 2007–2009, we studied mercury and stable isotope spatial patterns of macroinvertebrates and fishes from two medium-sized (<80 km2) forested basins in contrasting settings. Samples were collected seasonally from multiple sites across the Fishing Brook basin (FBNY), in New York’s Adirondack Mountains, and the McTier Creek basin (MCSC), in South Carolina’s Coastal Plain. Mean methylmercury (MeHg) concentrations within macroinvertebrate feeding groups, and mean total mercury (THg) concentrations within most fish feeding groups were similar between the two regions. However, mean THg concentrations in game fish and forage fish, overall, were much lower in FBNY (1300 and 590 ng/g dw, respectively) than in MCSC (2300 and 780 ng/g dw, respectively), due to lower trophic positions of these groups from FBNY (means 3.3 and 2.7, respectively) than MCSC (means 3.7 and 3.3, respectively). Much larger spatial variation in topography and water chemistry across FBNY contributed to greater spatial variation in biotic Hg and positive correlations with dissolved MeHg and organic carbon in streamwater. Hydrologic transport distance (HTD) was negatively correlated with biotic Hg across FBNY, and was a better predictor than wetland density. The small range of landscape conditions across MCSC resulted in no consistent spatial patterns, and no discernable correspondence with local-scale environmental factors. This study demonstrates the importance of local-scale environmental factors to mercury bioaccumulation in topographically heterogeneous landscapes, and provides evidence that food-chain length can be an important predictor of broad-scale differences in Hg bioaccumulation among streams.

Electronic supplementary material
The online version of this article (doi:10.1007/s10646-011-0719-9) contains supplementary material, which is available to authorized users.

0 Followers
 · 
178 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fish Bioaccumulation Factors (BAFs; ratios of mercury (Hg) in fish (Hgfish) and water (Hgwater)) are used to develop total maximum daily load and water quality criteria for Hg-impaired waters. Both applications require representative Hgfish estimates and, thus, are sensitive to sampling and data-treatment methods. Data collected by fixed protocol from 11 streams in 5 states distributed across the US were used to assess the effects of Hgfish normalization/standardization methods and fish-sample numbers on BAF estimates. Fish length, followed by weight, was most correlated to adult top-predator Hgfish. Site-specific BAFs based on length-normalized and standardized Hgfish estimates demonstrated up to 50% less variability than those based on non-normalized Hgfish. Permutation analysis indicated that length-normalized and standardized Hgfish estimates based on at least 8 trout or 5 bass resulted in mean Hgfish coefficients of variation less than 20%. These results are intended to support regulatory mercury monitoring and load-reduction program improvements. Published by Elsevier Ltd.
    Chemosphere 01/2015; 26. DOI:10.1016/j.chemosphere.2014.12.068 · 3.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Macroinvertebrates are a key vector in the transfer of methylmercury (MeHg) to fish. However, the factors that affect MeHg concentrations and bioaccumulation in these organisms are not as well understood as for fish, and studies on a broad geographic scale are lacking. In this study, we gathered published and unpublished MeHg and carbon (δ(13)C) and nitrogen (δ(15)N) stable isotope data for freshwater macroinvertebrates from 119 lakes and wetlands across seven Canadian provinces, along with selected physical, chemical and biological characteristics of these systems. Overall, water pH was the most important determinant of MeHg concentrations in both predatory and non-predatory invertebrates [[Formula: see text] = 0.32, p < 0.001; multivariate canonical redundancy analysis (RDA)]. The location of lakes explained additional variation in invertebrate MeHg (partial R(2) = 0.08 and 0.06 for latitude and longitude, respectively; RDA), with higher concentrations in more easterly and southerly regions. Both invertebrate foraging behaviour and trophic position (indicated by functional feeding groups and δ(15)N values, respectively) also predicted MeHg concentrations in the organisms. Collectively, results indicate that in addition to their feeding ecology, invertebrates accumulate more MeHg in acidic systems where the supply of MeHg to the food web is typically high. MeHg concentrations in macroinvertebrates may also be influenced by larger-scale geographic differences in atmospheric mercury deposition among regions.
    Ecotoxicology 01/2014; 23(2). DOI:10.1007/s10646-013-1171-9 · 2.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Soil represents the largest store of mercury (Hg) in terrestrial ecosystems, and further study of the factors associated with soil Hg storage is needed to address concerns about the magnitude and persistence of global environmental Hg bioaccumulation. To address this need, we compared total Hg and methyl Hg concentrations and stores in the soil of different landscapes in two watersheds in different geographic settings with similar and relatively high methyl Hg concentrations in surface waters and biota, Fishing Brook, Adirondack Mountains, New York, and McTier Creek, Coastal Plain, South Carolina. Median total Hg concentrations and stores in organic and mineral soil samples were three-fold greater at Fishing Brook than at McTier Creek. Similarly, median methyl Hg concentrations were about two-fold greater in Fishing Brook soil than in McTier Creek soil, but this difference was significant only for mineral soil samples, and methyl Hg stores were not significantly different among these watersheds. In contrast, the methyl Hg/total Hg ratio was significantly greater at McTier Creek suggesting greater climate-driven methylation efficiency in the Coastal Plain soil than that of the Adirondack Mountains. The Adirondack soil had eight-fold greater soil organic matter than that of the Coastal Plain, consistent with greater total Hg stores in the northern soil, but soil organic matter - total Hg relations differed among the sites. A strong linear relation was evident at McTier Creek (r(2) = 0.68; p<0.001), but a linear relation at Fishing Brook was weak (r(2) = 0.13; p<0.001) and highly variable across the soil organic matter content range, suggesting excess Hg binding capacity in the Adirondack soil. These results suggest greater total Hg turnover time in Adirondack soil than that of the Coastal Plain, and that future declines in stream water Hg concentrations driven by declines in atmospheric Hg deposition will be more gradual and prolonged in the Adirondacks.
    PLoS ONE 02/2014; 9(2):e86855. DOI:10.1371/journal.pone.0086855 · 3.53 Impact Factor

Full-text (3 Sources)

Download
61 Downloads
Available from
May 28, 2014