Article

Deficiency of the leukotriene B4 receptor, BLT-1, protects against systemic insulin resistance in diet-induced obesity.

Division of Cardiovascular Medicine, Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
The Journal of Immunology (Impact Factor: 5.52). 08/2011; 187(4):1942-9. DOI:10.4049/jimmunol.1100196
Source: PubMed

ABSTRACT Chronic inflammation is an underlying factor linking obesity with insulin resistance. Diet-induced obesity promotes an increase in circulating levels of inflammatory monocytes and their infiltration into expanding adipose tissue. Nevertheless, the endogenous pathways that trigger and sustain chronic low-grade inflammation in obesity are incompletely understood. In this study, we report that a high-fat diet selectively increases the circulating levels of CD11b(+) monocytes in wild-type mice that express leukotriene B(4) receptor, BLT-1, and that this increase is abolished in BLT-1-null mice. The accumulation of classically activated (M1) adipose tissue macrophages (ATMs) and the expression of proinflammatory cytokines and chemokines (i.e., IL-6 and Ccl2) was largely blunted in adipose tissue of obese BLT-1(-/-) mice, whereas the ratio of alternatively activated (M2) ATMs to M1 ATMs was increased. Obese BLT-1(-/-) mice were protected from systemic glucose and insulin intolerance and this was associated with a decrease in inflammation in adipose tissue and liver and a decrease in hepatic triglyceride accumulation. Deletion of BLT-1 prevented high fat-induced loss of insulin signaling in liver and skeletal muscle. These observations elucidate a novel role of chemoattractant receptor, BLT-1, in promoting monocyte trafficking to adipose tissue and promoting chronic inflammation in obesity and could lead to the identification of new therapeutic targets for treating insulin resistance in obesity.

0 0
 · 
0 Bookmarks
 · 
93 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Various inflammatory mediators related to obesity might be closely related to insulin resistance. Leukotrienes (LTs) are involved in inflammatory reactions. However, there are few reports regarding the role of LTs in adipocyte differentiation. Therefore, we investigated the role of leukotriene B4 (LTB4)-leukotriene receptor (BLT) signaling in mouse 3T3-L1 fibroblastic preadipocyte differentiation to mature adipocytes. Mouse 3T3-L1 preadipocytes were treated with lipoxygenase (LOX) inhibitors, BLT antagonist, and small interfering RNA (siRNA) for BLT1 and BLT2 to block the LTB4-BLT signaling pathway, then the adipocyte differentiation such as lipid accumulation and the increase in triglyceride was evaluated. Blockade of BLT signaling by treatment with a LOX inhibitor or a BLT antagonist suppressed preadipocyte differentiation into mature adipocytes. In addition, knockdown of BLT1 and BLT2 by siRNAs dramatically inhibited differentiation. These results indicate the LTB4-BLT signaling pathway may positively regulate preadipocyte differentiation and be a rate-limiting system to control adipocyte differentiation. The LTB4-BLT signaling pathway provides a potent regulatory signal that accelerates the differentiation of mouse 3T3-L1 preadipocytes. Further investigations are necessary to confirm the exact role of LTB4 and BLTs signaling pathways in preadipocyte differentiation.
    Lipids in Health and Disease 08/2013; 12(1):122. · 2.02 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: There is increasing evidence showing that inflammation is an important pathogenic mediator of the development of obesity-induced insulin resistance. It is now generally accepted that tissue-resident immune cells play a major role in the regulation of this obesity-induced inflammation. The roles that adipose tissue (AT)-resident immune cells play have been particularly extensively studied. AT contains most types of immune cells and obesity increases their numbers and activation levels, particularly in AT macrophages (ATMs). Other pro-inflammatory cells found in AT include neutrophils, Th1 CD4 T cells, CD8 T cells, B cells, DCs, and mast cells. However, AT also contains anti-inflammatory cells that counter the pro-inflammatory immune cells that are responsible for the obesity-induced inflammation in this tissue. These anti-inflammatory cells include regulatory CD4 T cells (Tregs), Th2 CD4 T cells, and eosinophils. Hence, AT inflammation is shaped by the regulation of pro- and anti-inflammatory immune cell homeostasis, and obesity skews this balance towards a more pro-inflammatory status. Recent genetic studies revealed several molecules that participate in the development of obesity-induced inflammation and insulin resistance. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation and insulin resistance are discussed, with particular attention being placed on the roles of the cellular players in these pathogeneses. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
    Biochimica et Biophysica Acta 05/2013; · 4.66 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: There is a growing amount of evidence that obesity-induced low-grade inflammation is an important causative link between obesity and many of its associated pathologies such as type 2 diabetes and atherosclerosis. In the quest to identify the triggers of obesity-associated inflammation of adipose tissue, our laboratory recently demonstrated that adipocytes can secrete leukotrienes, and that these pro-inflammatory lipid mediators contribute to obesity-associated inflammation and insulin resistance in mice. Together with other recent studies, our recent findings identify an important role for the enzyme 5-lipoxygenase and its products in the induction and resolution of adipose tissue inflammation. Therefore, pharmaceutical approaches that target this enzyme or its products should be considered as novel treatments aimed at preventing or resolving obesity-induced inflammation and its associated pathologies.
    Adipocyte. 10/2013; 2(4):262-5.

Full-text

View
27 Downloads
Available from
Sep 12, 2012