Article

Enhanced production of bioethanol and ultrastructural characteristics of reused Saccharomyces cerevisiae immobilized calcium alginate beads.

Department of Wood Science and Landscape Architecture (BK21 Program), Chonnam National University, Gwangju 500-757, Republic of Korea.
Bioresource Technology (Impact Factor: 5.04). 09/2011; 102(17):8191-8. DOI: 10.1016/j.biortech.2011.06.063
Source: PubMed

ABSTRACT Yeast immobilized on alginate beads produced a higher ethanol yield more rapidly than did free yeast cells under the same batch-fermentation conditions. The optimal fermentation conditions were 30°C, pH 5.0, and 10% initial glucose concentration with 2% sodium alginate beads. The fermentation time using reused alginate beads was 10-14 h, whereas fresh beads took 24h, and free cells took 36 h. All bead samples resulted in nearly a 100% ethanol yield, whereas the free cells resulted in an 88% yield. Transmission electron microscopy (TEM) showed that the shortened time and higher yield with the reused beads was due to a higher yeast population per bead as well as a higher porosity. The ultrastructure of calcium alginate beads and the alginate matrix structure known as the "egg-box" model were observed using TEM.

0 Bookmarks
 · 
130 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, optimization of ethanol production from carob pod extract was carried out by immobilized Saccharomyces cerevisiae. Results showed that Ca-alginate concentration and the amount of immobilized cells had significant effects on yield. Optimum conditions for ethanol fermentation were determined to be 2% Ca-alginate concentration, 150rpm agitation rate, 5% yeast cells entrapped in beads and pH 5.5. After validation experiments; ethanol concentration, yield, production rate and sugar utilization rate were respectively 40.10g/L, 46.32%, 3.19g/L/h and 90.66%; and the fermentation time was decreased to 24h. In addition, the immobilized cells were shown to be reusable for five cycles, though a decrease in yield was observed. Finally, carob pod extract was used for ethanol fermentation by controlled and uncontrolled pH without any enrichment, and the results suggest that carob extract can be utilized effectively by immobilized-cell fermentation without the use of enrichments to facilitate yeast growth.
    Bioresource Technology 09/2012; · 5.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The microalga Chlorella vulgaris is a potential feedstock for bioenergy due to its rapid growth, carbon dioxide fixation efficiency, and high accumulation of lipids and carbohydrates. In particular, the carbohydrates in microalgae make them a candidate for bioethanol feedstock. In this study, nutrient stress cultivation was employed to enhance the carbohydrate content of C. vulgaris. Nitrogen limitation increased the carbohydrate content to 22.4% from the normal content of 16.0% on dry weight basis. In addition, several pretreatment methods and enzymes were investigated to increase saccharification yields. Bead-beating pretreatment increased hydrolysis by 25% compared with the processes lacking pretreatment. In the enzymatic hydrolysis process, the pectinase enzyme group was superior for releasing fermentable sugars from carbohydrates in microalgae. In particular, pectinase from Aspergillus aculeatus displayed a 79% saccharification yield after 72h at 50°C. Using continuous immobilized yeast fermentation, microalgal hydrolysate was converted into ethanol at a yield of 89%.
    Bioresource Technology 12/2013; 153C:47-54. · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A bacterial strain E21 was isolated from a sample of water collected in the salt lake located close to Ain Salah, Algeria. The analysis of 16S rRNA gene sequence had indicated that the strain had 93 % sequence similarity with the genus Natrialba sp. strain E21 (GenBank, FR750525.1) and was considered extremely halophilic. Production of biosurfactant by the strain E21 with free and entrapped cells was investigated using soluble starch in the saline conditions. Biosurfactant synthesis was followed by measuring the surface tension and emulsifying index 9 days under optimal conditions (40 °C, pH 7). Some diffusional limitations in alginate and agar beads affected the kinetics of biosurfactant production when compared to that obtained with free cells culture. The minimum values of surface tension were 27 and 30 mN m(-1) achieved after 9 days with free and immobilized cells, respectively, while the corresponding maximum E24 values were 65.3 and 62.3 %, respectively. The re-use of bacterial cells along with the limited cell losses provided by the immobilized system might lead to significant reduction of the biosurfactant production cost.
    Extremophiles 09/2013; · 2.20 Impact Factor