Article

Estimating risk at a Superfund site using passive sampling devices as biological surrogates in human health risk models

Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA.
Chemosphere (Impact Factor: 3.5). 07/2011; 85(6):920-7. DOI: 10.1016/j.chemosphere.2011.06.051
Source: PubMed

ABSTRACT Passive sampling devices (PSDs) sequester the freely dissolved fraction of lipophilic contaminants, mimicking passive chemical uptake and accumulation by biomembranes and lipid tissues. Public Health Assessments that inform the public about health risks from exposure to contaminants through consumption of resident fish are generally based on tissue data, which can be difficult to obtain and requires destructive sampling. The purpose of this study is to apply PSD data in a Public Health Assessment to demonstrate that PSDs can be used as a biological surrogate to evaluate potential human health risks and elucidate spatio-temporal variations in risk. PSDs were used to measure polycyclic aromatic hydrocarbons (PAHs) in the Willamette River; upriver, downriver and within the Portland Harbor Superfund megasite for 3 years during wet and dry seasons. Based on an existing Public Health Assessment for this area, concentrations of PAHs in PSDs were substituted for fish tissue concentrations. PSD measured PAH concentrations captured the magnitude, range and variability of PAH concentrations reported for fish/shellfish from Portland Harbor. Using PSD results in place of fish data revealed an unacceptable risk level for cancer in all seasons but no unacceptable risk for non-cancer endpoints. Estimated cancer risk varied by several orders of magnitude based on season and location. Sites near coal tar contamination demonstrated the highest risk, particularly during the dry season and remediation activities. Incorporating PSD data into Public Health Assessments provides specific spatial and temporal contaminant exposure information that can assist public health professionals in evaluating human health risks.

Download full-text

Full-text

Available from: Greg James Sower, Oct 16, 2014
0 Followers
 · 
122 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper details how activity-based passive sampling methods (PSMs), which provide information on bioavailability in terms of freely dissolved contaminant concentrations (Cfree ), can be used to better inform risk management decision-making at multiple points in the process of assessing and managing contaminated sediment sites. Because Cfree is a better predictor of bioavailability than total bulk sediment concentration (Ctotal ) for four key endpoints included in conceptual site models (benthic organism toxicity, bioaccumulation, sediment flux, and water column exposures), PSMs can increase certainty in site investigation and management. Because of their small size, the use of PSDs presents particular challenges with respect to representative sampling for estimating average concentrations and other metrics relevant for exposure and risk assessment. These challenges can be addressed by designing studies that account for sources of variation associated with the PSDs and spatial scales. Possible applications of PSMs include: quantifying spatial and temporal trends in bioavailable contaminants; identifying and evaluating contaminant source contributions; calibrating site-specific models; and, improving weight-of-evidence based decision frameworks. PSM data can be used to: assist in delineating sediment management zones based on likelihood of exposure effects; monitor remedy effectiveness; and, evaluate risk reduction after sediment treatment, disposal, or beneficial reuse following management actions. Examples are provided illustrating why PSMs and Cfree should be incorporated into contaminated sediment investigations and study designs to better understand and focus on contaminant bioavailability, more accurately estimate exposure to sediment-associated contaminants, and better inform risk management decisions. Research and communication needs for encouraging broader use are discussed. Integr Environ Assess Manag © 2013 SETAC.
    Integrated Environmental Assessment and Management 04/2014; 10(2). DOI:10.1002/ieam.1511
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An estimated 4.1 million barrels of oil and 2.1 million gallons of dispersants were released into the Gulf of Mexico during the Deepwater Horizon oil spill. There is a continued need for information about the impacts and long-term effects of the disaster on the Gulf of Mexico. The objectives of this study were to assess bioavailable polycyclic aromatic hydrocarbons (PAHs) in the coastal waters of four Gulf Coast states that were impacted by the spill. For over a year, beginning in May 2010, passive sampling devices were used to monitor the bioavailable concentration of PAHs. Prior to shoreline oiling, baseline data were obtained at all the study sites, allowing for direct before and after comparisons of PAH contamination. Significant increases in bioavailable PAHs were seen following the oil spill, however, preoiling levels were observed at all sites by March 2011. A return to elevated PAH concentrations, accompanied by a chemical fingerprint similar to that observed while the site was being impacted by the spill, was observed in Alabama in summer 2011. Chemical forensic modeling demonstrated that elevated PAH concentrations are associated with distinctive chemical profiles.
    Environmental Science & Technology 02/2012; 46(4):2033-9. DOI:10.1021/es202942q · 5.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biological Response Indicator Devices Gauging Environmental Stressors (BRIDGES) is a bioanalytical tool that combines passive sampling with the embryonic zebrafish developmental toxicity bioassay to provide a quantitative measure of the toxicity of bioavailable complex mixtures. Passive sampling devices (PSDs), which sequester and concentrate bioavailable organic contaminants from the environment, were deployed in the Willamette and Columbia Rivers within and outside of the Portland Harbor Superfund site in Portland, OR, USA. Six sampling events were conducted in the summer and fall of 2009 and 2010. Passive sampling device extracts were analyzed for polycyclic aromatic hydrocarbon (PAH) compounds and screened for 1,201 chemicals of concern using deconvolution-reporting software. The developmental toxicity of the extracts was analyzed using the embryonic zebrafish bioassay. The BRIDGES tool provided site-specific, temporally resolved information about environmental contaminant mixtures and their toxicity. Multivariate modeling approaches were applied to paired chemical and toxic effects data sets to help unravel chemistry–toxicity associations. Modeling elucidated spatial and temporal trends in PAH concentrations and the toxicity of the samples and identified a subset of PAH analytes that were the most highly correlated with observed toxicity. Although the present study highlights the complexity of discerning specific bioactive compounds in complex mixtures, it demonstrates methods for associating toxic effects with chemical characteristics of environmental samples. Environ. Toxicol. Chem. 2012; 31: 2877–2887. © 2012 SETAC
    Environmental Toxicology and Chemistry 12/2012; 31(12). DOI:10.1002/etc.2018 · 2.83 Impact Factor