Article

Sensory motor remapping of space in human-machine interfaces.

Department of Physiology, Northwestern University, Chicago, Illinois, USA.
Progress in brain research (Impact Factor: 4.19). 01/2011; 191:45-64. DOI: 10.1016/B978-0-444-53752-2.00014-X
Source: PubMed

ABSTRACT Studies of adaptation to patterns of deterministic forces have revealed the ability of the motor control system to form and use predictive representations of the environment. These studies have also pointed out that adaptation to novel dynamics is aimed at preserving the trajectories of a controlled endpoint, either the hand of a subject or a transported object. We review some of these experiments and present more recent studies aimed at understanding how the motor system forms representations of the physical space in which actions take place. An extensive line of investigations in visual information processing has dealt with the issue of how the Euclidean properties of space are recovered from visual signals that do not appear to possess these properties. The same question is addressed here in the context of motor behavior and motor learning by observing how people remap hand gestures and body motions that control the state of an external device. We present some theoretical considerations and experimental evidence about the ability of the nervous system to create novel patterns of coordination that are consistent with the representation of extrapersonal space. We also discuss the perspective of endowing human-machine interfaces with learning algorithms that, combined with human learning, may facilitate the control of powered wheelchairs and other assistive devices.

0 Bookmarks
 · 
116 Views
  • Source
    IEEE Transactions on Neural Systems and Rehabilitation Engineering 07/2014; 22(4):711-5. · 3.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: When performing a skill such as throwing a dart, many different combinations of joint motions suffice to hit the target. The motor system adapts rapidly to reduce bias in the desired outcome (i.e., the first-order moment of the error); however, the essence of skill is to produce movements with less variability (i.e., to reduce the second-order moment). It is easy to see how feedback about success or failure could sculpt performance to achieve this aim. However, it is unclear whether the dimensions responsible for success or failure need to be known explicitly by the subjects, or whether learning can proceed without explicit awareness of the movement parameters that need to change. Here, we designed a redundant, two-dimensional reaching task in which we could selectively manipulate task success and the variability of action outcomes, whilst also manipulating awareness of the dimension along which performance could be improved. Variability was manipulated either by amplifying natural errors, leaving the correlation between the executed movement and the visual feedback intact, or by adding extrinsic noise, decorrelating movement and feedback. We found that explicit, binary, feedback about success or failure was only sufficient for learning when participants were aware of the dimension along which motor behavior had to change. Without such awareness, learning was only present when extrinsic noise was added to the feedback, but not when task success or variability was manipulated in isolation; learning was also much slower. Our results highlight the importance of conscious awareness of the relevant dimension during motor learning, and suggest that higher-order moments of outcome signals are likely to play a significant role in skill learning in complex tasks.
    PLoS ONE 01/2014; 9(1):e86580. · 3.53 Impact Factor

Full-text

View
2 Downloads
Available from