Article

Advances in microfluidic PCR for point-of-care infectious disease diagnostics

Department of Emergency Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
Biotechnology advances (Impact Factor: 8.91). 06/2011; 29(6):830-9. DOI: 10.1016/j.biotechadv.2011.06.017
Source: PubMed

ABSTRACT Global burdens from existing or emerging infectious diseases emphasize the need for point-of-care (POC) diagnostics to enhance timely recognition and intervention. Molecular approaches based on PCR methods have made significant inroads by improving detection time and accuracy but are still largely hampered by resource-intensive processing in centralized laboratories, thereby precluding their routine bedside- or field-use. Microfluidic technologies have enabled miniaturization of PCR processes onto a chip device with potential benefits including speed, cost, portability, throughput, and automation. In this review, we provide an overview of recent advances in microfluidic PCR technologies and discuss practical issues and perspectives related to implementing them into infectious disease diagnostics.

2 Followers
 · 
172 Views
  • Source
    • "Various types of design is utilized for sensor development. The design of sensor is to ensure that it can be applicable for multi-tasking in a single biochip [2] [3] [4]. As for example, development of bio-chip embedded with micro-fluidic can be utilized as biosensor to detect variable types of substances in a small period of time [5] [6] [7] [8]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper mainly illustrate regarding the fabrication process of IDE based sensor for bio-molecular detection process. Material that is utilized in this process is zinc oxide due to bio-compability and elevated electrical characteristic. IDE mask is designed by using auto-cad software which tailors for detection of bio substance which is extremely small scale in size. Zinc Oxide material is also used due to presented of nano structure that can be synthesized through hydrothermal route. Zinc oxide solution is prepared by series of sol-gel process and is coated on the SiO substrate which acts as insulator layer during the lithography process. IDE mask is patterned transfer on sample by using conventional lithography process which the parameters are critically adjusted to ensure that the pattern transfer process occur with minimal defects. The fabricated sensor will be further validated through electrical and morphological characteristic. Capacitance test and impedance test is taken with various pH solution to observe the response of the sensor with different pH values.
  • Source
    • "To demonstrate active/acute infection, on-chip NA amplification methods have been developed based on their versatility, speed, and high sensitivity and specificity [9] [10] [11]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A prototype dual-path microfluidic device (Rheonix CARD) capable of performing simultaneously screening (antigen or antibody) and confirmatory (nucleic acid) detection of pathogens is described. The device fully integrates sample processing, antigen or antibody detection, and nucleic acid amplification and detection, demonstrating rapid and inexpensive “sample-to-result” diagnosis with performance comparable to benchtop analysis. For the chip design, a modular approach was followed allowing the optimization of individual steps in the sample processing process. This modular design provides great versatility accommodating different disease targets independently of the production method. In the detection module, a lateral flow (LF) protocol utilizing upconverting phosphor (UCP) reporters was employed. The nucleic acid (NA) module incorporates a generic microtube containing dry reagents. Lateral flow strips and PCR primers determine the target or disease that is diagnosed. Diagnosis of HIV infection was used as a model to investigate the simultaneous detection of both human antibodies against the virus and viral RNA. The serological result is available in less than 30 min, and the confirmation by RNA amplification takes another 60 min. This approach combines a core serological portable diagnostic with a nucleic acid-based confirmatory test.
    BioMed Research International 02/2013; DOI:10.1155/2013/543294 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Highly sensitive detection of foodborne pathogens such as Listeria monocytogenes (L. monocytogenes) is crucial to the prevention and recognition of problems related to public health and legal repercussions, due to “zero tolerance” standard adopted for food safety in many countries. Here we first propose a single-phase continuous-flow nested polymerase chain reaction (SP-CF-NPCR) strategy for identification of the low level of L. monocytogenes on an integrated microfluidic platform. The PCR reactor is constructed by a disposable capillary embedded in the grooved heating column, coupled with a fluorescence microscopy for on-line semi-quantitative end-point fluorescence detection. As a proof-of-concept microfluidic system, the nested PCR is performed in a continuous-flow format without the need of any non-aqueous oil or solvent. On this device, the performance of nested PCR amplification has been evaluated by investigating the effect of reaction parameters, including polymerase concentration, flow rates, and template DNA concentration. In addition, the types of samples the presented system can accept, such as the unpurified DNA samples and artificially contaminated clinical stool samples were also evaluated. With the optimized reaction parameters, 0.2 copies/μL of genomic DNA from L. monocytogenes can be detected on the presented device. To our knowledge, this is the highest detection sensitivity in single-phase continuous-flow PCR microsystems reported so far. The high sensitivity of the analysis method, combined with the flexibility of reaction volumes and convenience of continuous operation, renders it to be further developed for potential analytical and diagnostic applications.
    Microfluidics and Nanofluidics 08/2013; 15(2). DOI:10.1007/s10404-013-1138-4 · 2.67 Impact Factor
Show more

Preview

Download
3 Downloads
Available from