Distinct expression patterns of the subunits of the CCR4-NOT deadenylase complex during neural development

Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 07/2011; 411(2):360-4. DOI: 10.1016/j.bbrc.2011.06.148
Source: PubMed

ABSTRACT The stability of mRNA influences the dynamics of gene expression. The mammalian CCR4-NOT complex is associated with deadenylase activity, which shortens the mRNA poly(A) tail and thereby contributes to destabilization of mRNAs. The complex consists of at least nine subunits and predominantly forms a 2.0MDa protein complex in HeLa cells. Accumulating evidence suggests that the CCR4-NOT complex is involved in cell growth and survival; however, the regulatory mechanisms of its biological activity remain obscure. Here, we analyzed the expression levels of the subunits of the CCR4-NOT complex in various mouse tissues and found that they showed distinct expression patterns. CNOT6, 6L, 7, and 10 were expressed nearly ubiquitously, whereas others were expressed in tissue-specific manners, such as those displaying especially high expression in the brain. Furthermore, CNOT2, 3, 6, and 8 were rapidly downregulated during differentiation of neural stem cells. These findings suggest that subunit composition of the CCR4-NOT complex differs among tissues and is altered during neural development, thereby imparting an additional layer of specificity in the control of gene expression.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human brain development is a dramatic process composed of a series of complex and fine-tuned spatiotemporal gene expressions. A good comprehension of this process can assist us in developing the potential of our brain. However, we have only limited knowledge about the genes and gene functions that are involved in this biological process. Therefore, a substantial demand remains to discover new brain development-related genes and identify their biological functions. In this study, we aimed to discover new brain-development related genes by building a computational method. We referred to a series of computational methods used to discover new disease-related genes and developed a similar method. In this method, the shortest path algorithm was executed on a weighted graph that was constructed using protein-protein interactions. New candidate genes fell on at least one of the shortest paths connecting two known genes that are related to brain development. A randomization test was then adopted to filter positive discoveries. Of the final identified genes, several have been reported to be associated with brain development, indicating the effectiveness of the method, whereas several of the others may have potential roles in brain development.
    PLoS ONE 01/2015; 10(1-1):e0118003. DOI:10.1371/journal.pone.0118003 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The carbon catabolite repression 4 (CCR4)-negative on TATA-less (NOT) complex serves as one of the major deadenylases of eukaryotes. Although it was originally identified and characterized in yeast, recent studies have revealed that the CCR4-NOT complex also exerts important functions in mammals, -including humans. However, there are some differences in the composition and functions of the CCR4-NOT complex between mammals and yeast. It is noteworthy that each subunit of the CCR4-NOT complex has unique, multifunctional roles and is responsible for various physiological phenomena. This heterogeneity and versatility of the CCR4-NOT complex makes an overall understanding of this complex difficult. Here, we describe the functions of each subunit of the mammalian CCR4-NOT complex and discuss the molecular mechanisms by which it regulates homeostasis in mammals. Furthermore, a possible link between the disruption of the CCR4-NOT complex and various diseases will be discussed. Finally, we propose that the analysis of mice with each CCR4-NOT subunit knocked out is an effective strategy for clarifying its complicated functions and networks in mammals.
    Frontiers in Genetics 08/2014; 5:286. DOI:10.3389/fgene.2014.00286
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While regulation of the activity of developmental control genes at the transcriptional level as well as by specific miRNA-based degradation are intensively studied, little is known whether general cellular mechanisms controlling mRNA decay may contribute to differential stability of mRNAs of developmental control genes. Here, we investigate whether a mutation in the deadenylation dependent mRNA decay pathway may reveal differential effects on developmental mechanisms, using dopaminergic differentiation in the zebrafish brain as model system. In a zebrafish genetic screen aimed at identifying genes controlling dopaminergic neuron development we isolated the m1061 mutation that selectively caused increased dopaminergic differentiation in the caudal hypothalamus, while other dopaminergic groups were not affected. Positional cloning revealed that m1061 causes a premature stop codon in the cnot8 open reading frame. Cnot8 is a component of the Ccr4-Not complex and displays deadenylase activity, which is required for removal of the poly (A) tail in bulk mRNA turnover. Analyses of expression of developmental regulators indicate that loss of Cnot8 activity results in increased mRNA in situ hybridization signal levels for a subset of developmental control genes. We show that in the area of caudal hypothalamic dopaminergic differentiation, mRNA levels for several components of the FGF signaling pathway, including Fgf3, FGF receptors, and FGF target genes, are increased. Pharmacological inhibition of FGF signaling or a mutation in the fgf3 gene can compensate the gain of caudal hypothalamic dopaminergic neurons in cnot8m1061 mutants, indicating a role for Fgf3 in control of development of this dopaminergic population. The cnot8m1061 mutant phenotype provides an in vivo system to study roles of the Cnot8 deadenylase component of the mRNA decay pathway in vertebrate development. Our data indicate that attenuation of Cnot8 activity differentially affects mRNA levels of developmental control genes.
    PLoS ONE 12/2014; 9(12):e113829. DOI:10.1371/journal.pone.0113829 · 3.53 Impact Factor