Non-invasive monitoring of hepatocellular carcinoma in transgenic mouse with bioluminescent imaging

Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 139-706, Republic of Korea.
Cancer letters (Impact Factor: 5.62). 11/2011; 310(1):53-60. DOI: 10.1016/j.canlet.2011.06.013
Source: PubMed

ABSTRACT A small animal imaging system for hepatocellular carcinoma (HCC)-specific reporter gene expression will enable monitoring of carcinogenesis or therapeutic intervention in vivo. Transgenic mouse was developed in which firefly luciferase (fLuc) expression was controlled by the AFP enhancer/promoter. The bioluminescent signals of the transgenic neonates were strong at their liver region and decreased after birth. Bioluminescent imaging (BLI) of a transgenic mouse treated with N-nitrosodiethylamine revealed distinct fLuc activity in the liver and an increased pattern with time. The transgenic mouse model can be used to monitor AFP producing HCC by a chemical carcinogen in a live animal by BLI.

Download full-text


Available from: Gi Jeong Cheon, May 03, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The in vivo molecular imaging method is a useful tool for monitoring carcinogenesis in various hepatocellular carcinoma (HCC) models, such as xenografted-, chemical induced- and transgenic mice. The tumor-specific gene expression strategy, such as transcriptional targeting, is essential for achieving a lower toxicity for normal liver tissue in therapy and the monitoring of tumor progression in diagnosis, respectively. The present study aimed to visualize spontaneously developing α-fetoprotein (AFP)-producing HCC through targeted gene expression in tumors using recombinant adenoviral vector. The recombinant adenovirus vector, AdAFPfLuc (containing firefly luciferase gene driven by human AFP enhancer/promoter) was prepared. After in vitro infection by adenovirus, gene expression was confirmed using the luciferase assay, semi-quantitative reverse transcriptase-polymerase chain reaction and western blotting in AFP-producing and nonproducing cells. Tumor-bearing mice were intravenously injected with adenovirus, and bioluminescent images were obtained. The expression of fLuc was efficiently demonstrated by the luciferase assay in AFP-producing cells but not in AFP-nonproducing cells. AFP-producing HCC targeted gene expression was confirmed at the mRNA and protein levels. After being injected intravenously in HuH-7 xenografts and HCC-bearing diethylnitrosamine-treated mice using adenovirus, functional reporter gene expression was confirmed in tumors by in vivo bioluminescent imaging (BLI). The recombinant adenovirus vector system can be used to monitor spontaneously developing AFP-producing HCC and to evaluate targeted gene expression in tumors by in vivo BLI in a small animal model.
    The Journal of Gene Medicine 08/2012; 14(8):513-20. DOI:10.1002/jgm.2648 · 2.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bioluminescent imaging (BLI) is a powerful noninvasive tool that has dramatically accelerated the in vivo interrogation of cancer systems and longitudinal analysis of mouse models of cancer over the past decade. Various luciferase enzymes have been genetically engineered into mouse models (GEMM) of cancer, which permit investigation of cellular and molecular events associated with oncogenic transcription, posttranslational processing, protein-protein interactions, transformation, and oncogene addiction in live cells and animals. Luciferase-coupled GEMMs ultimately serve as a noninvasive, repetitive, longitudinal, and physiologic means by which cancer systems and therapeutic responses can be investigated accurately within the autochthonous context of a living animal.
    Cancer Discovery 04/2013; 3(6). DOI:10.1158/2159-8290.CD-12-0503 · 19.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Molecular-genetic imaging of cancer using nonviral delivery systems has great potential for clinical application as a safe, efficient, noninvasive tool for visualization of various cellular processes including detection of cancer, and its attendant metastases. In recent years, significant effort has been expended in overcoming technical hurdles to enable clinical adoption of molecular-genetic imaging. This chapter will provide an introduction to the components of molecular-genetic imaging and recent advances on each component leading to safe, efficient clinical applications for detecting cancer. Combination with therapy, namely, generating molecular-genetic theranostic constructs, will provide further impetus for clinical translation of this promising technology.
    Advances in Cancer Research 01/2014; 124:131-69. DOI:10.1016/B978-0-12-411638-2.00004-5 · 4.26 Impact Factor
Show more