Article

Inactivation of Shiga Toxin-Producing O157:H7 and Non-O157:H7 Shiga Toxin-Producing Escherichia coli in Brine-Injected, Gas-Grilled Steaks

U.S. Department of Agriculture, Agricultural Research Service, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA.
Journal of food protection (Impact Factor: 1.8). 07/2011; 74(7):1054-64. DOI: 10.4315/0362-028X.JFP-10-579
Source: PubMed

ABSTRACT We quantified translocation of Escherichia coli O157:H7 (ECOH) and non-O157:H7 verocytotoxigenic E. coli (STEC) into beef subprimals after brine injection and subsequently monitored their viability after cooking steaks cut therefrom. Beef subprimals were inoculated on the lean side with ca. 6.0 log CFU/g of a five-strain cocktail of rifampin-resistant ECOH or kanamycin-resistant STEC, and then passed once through an automatic brine-injector tenderizer, with the lean side facing upward. Brine solutions (9.9% ± 0.3% over fresh weight) consisted of 3.3% (wt/vol) of sodium tripolyphosphate and 3.3% (wt/vol) of sodium chloride, prepared both with (Lac(+), pH = 6.76) and without (Lac(-), pH = 8.02) a 25% (vol/vol) solution of a 60% potassium lactate-sodium diacetate syrup. For all samples injected with Lac(-) or Lac(+) brine, levels of ECOH or STEC recovered from the topmost 1 cm (i.e., segment 1) of a core sample obtained from tenderized subprimals ranged from ca. 4.7 to 6.3 log CFU/g; however, it was possible to recover ECOH or STEC from all six segments of all cores tested. Next, brine-injected steaks from tenderized subprimals were cooked on a commercial open-flame gas grill to internal endpoint temperatures of either 37.8 °C (100 °F), 48.8 °C (120 °F), 60 °C (140 °F), or 71.1 °C (160 °F). Regardless of brine formulation or temperature, cooking achieved reductions (expressed as log CFU per gram) of 0.3 to 4.1 of ECOH and 0.5 to 3.6 of STEC. However, fortuitous survivors were recovered even at 71.1 °C (160 °F) for ECOH and for STEC. Thus, ECOH and STEC behaved similarly, relative to translocation and thermal destruction: Tenderization via brine injection transferred both pathogens throughout subprimals and cooking highly contaminated, brine-injected steaks on a commercial gas grill at 71.1 °C (160 °F) did not kill all cells due, primarily, to nonuniform heating (i.e., cold spots) within the meat.

0 Bookmarks
 · 
104 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The non-O157 Shiga toxigenic Escherichia coli (STEC) serogroups most commonly associated with illness are O26, O45, O103, O111, O121, and O145. We compared the thermal tolerance (D55°C) of three or more strains of each of these six non-O157 STEC serogroups with five strains of O157:H7 STEC in 7% fat ground beef. D55°C was also determined for at least one heat-tolerant STEC strain per serogroup in 15 and 27% fat ground beef. D55°C of single-pathogen cocktails of O157 and non-O157 STEC, Salmonella, and potential pathogen surrogates, Pediococcus acidilactici and Staphylococcus carnosus, was determined in 7, 15, and 27% fat ground beef and in frankfurter batter. Samples (25 g) were heated for up to 120 min at 55°C, survivors were enumerated, and log CFU per gram was plotted versus time. There were significant differences in D55°C across all STEC strains heated in 7% fat ground beef (P < 0.05), but no non-O157 STEC strain had D55°C greater than the range observed for O157 STEC. D55°C was significantly different for strains within serogroups O45, O145, and O157 (P < 0.05). D55°C for non-O157 STEC strains in 15 and 27% fat ground beef were less than or equal to the range of D55°C for O157. D55°C for pathogen cocktails was not significantly different when measured in 7, 15, and 27% fat ground beef (P ≥ 0.05). D55°C of Salmonella in frankfurter batter was significantly less than for O157 and non-O157 STEC (P < 0.05). Thermal tolerance of pathogen cocktails in ground beef (7, 15, or 27% fat) and frankfurter batter was significantly less than for potential pathogen surrogates (P < 0.05). Results suggest that thermal processes in beef validated against E. coli O157:H7 have adequate lethality against non-O157 STEC, that thermal processes that target Salmonella destruction may not be adequate against STEC in some situations, and that the use of pathogen surrogates P. acidilactici and S. carnosus to validate thermal processing interventions in ground beef and frankfurter batter would be of limited utility to processors.
    Journal of food protection 09/2014; 77(9):1501-1511. DOI:10.4315/0362-028X.JFP-14-106 · 1.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Verocytotoxigenic Escherichia coli (VTEC) are a significant foodborne public health hazard in Europe, where most human infections are associated with six serogroups (O157, O26, O103, O145, O111 and O104). With the exception of O104, these serogroups are associated with bovine animals and beef products. This paper reviews our current knowledge of VTEC in the beef chain focusing on transmission and the factors which impact on survival from the farm through transport, lairage, slaughter, dressing, processing and distribution, in the context of the European beef industry. It provides new information on beef farm and animal hide prevalence, distribution and virulence factors as well as pre-chilled carcass and ground beef prevalence, generated by the recently completed EU Framework research project, ProSafeBeef. In the concluding section, emerging issues and data gaps are addressed with a view to increasing our understanding of this pathogen and developing new thinking on detection and control.
    Meat Science 01/2014; 97(3). DOI:10.1016/j.meatsci.2014.01.009 · 2.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to relate consumer preferences and preparation of hamburgers to color change, internal temperature and reduction of shigatoxigenic Escherichia coli (STEC) serogroups O157 and the "Big Six" (O26, O45, O103, O111, O121, O145) under two ground beef packaging scenarios: 75% O2 MAP and vacuum. 75% O2 MAP hamburgers cooked to 60°C core temperature appeared done and showed less internal red color (lower a*) than corresponding vacuum hamburgers. Similar STEC reduction (<4 log10) was found for both hamburgers at core temperatures ≤66°C. In a representative survey (N=1046) most consumers reported to judge hamburger doneness by the color and many preferred undercooked hamburgers. Premature browning of 75% O2 MAP hamburgers represents a risk of foodborne illness, when considering consumers' food handling practices. The risk is even greater if such ground beef is prepared by consumers who prefer undercooked hamburgers and judge doneness by color.
    Meat Science 09/2013; 96(2PA):695-703. DOI:10.1016/j.meatsci.2013.09.009 · 2.23 Impact Factor