Article

The complete mitochondrial genome of the American lobster, Homarus americanus (Crustacea, Decapoda).

Korea Polar Research Institute, KORDI, Yeonsu-gu Incheon, South Korea.
Mitochondrial DNA (Impact Factor: 1.71). 07/2011; 22(3):47-9. DOI: 10.3109/19401736.2011.597389
Source: PubMed

ABSTRACT Although relatively a large number of the complete mitochondrial genome sequences have been determined from various decapod species (29 mtDNA sequences reported so far), the information for the infraorder Astacidea (including lobsters, crayfishes, and their relatives) is very limited and represented by only one complete sequence from the Australian freshwater crayfish species Cherax destructor. In this study, we determined the complete mitochondrial DNA sequence of Homarus americanus, the first representative of the family Nephropidae to be fully characterized. Comparison of the gene arrangement reveals that H. americanus mtDNA is identical to those of other pancrustacean species but differs from the other astacidean species (C. destructor). Based on these data, it can be assumed that an idiosyncratic gene order discovered in C. destructor mtDNA may be secondarily acquired from the ancestral lineage of the Astacidea.

0 Bookmarks
 · 
155 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We determined the complete mitochondrial (mt) genome sequence of the Japanese ghost shrimp Nihonotrypaea japonica (Ortmann 1891) (Crustacea, Decapoda, Axiidea). The N. japonica mt genome is first represented in infraorder Axiidea, which, together with infraorder Gebiidea, belonged to infraorder Thalassinidea until recently. The genome sequence of N. japonica is 15,274 bp in size, and the gene arrangement and transcriptional polarity are partially different from that of the Japanese mud shrimp, Upogebia major, which belongs to the infraorder Gebiidea. We present the mt genome of N. japonica, which could provide useful molecular information to construct a stable classification for infraorder Thalassinidea and to better understand the phylogenetic relationship of Thalassinidea with other decapod groups.
    Mitochondrial DNA 01/2013; · 1.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although it is possible to recover the complete mitogenome directly from shotgun sequencing data, currently reported methods and pipelines are still relatively time consuming and costly. Using a sample of the Australian freshwater crayfish Engaeus lengana, we demonstrate that it is possible to achieve three-day turnaround time (four hours hands-on time) from tissue sample to NCBI-ready submission file through the integration of MiSeq sequencing platform, Nextera sample preparation protocol, MITObim assembly algorithm and MITOS annotation pipeline. The complete mitochondrial genome of the parastacid freshwater crayfish, Engaeus lengana, was recovered by modest shotgun sequencing (1.2 giga bases) using the Illumina MiSeq benchtop sequencing platform. Genome assembly using the MITObim mitogenome assembler recovered the mitochondrial genome as a single contig with a 97-fold mean coverage (min. = 17; max. = 138). The mitogenome consists of 15,934 base pairs and contains the typical 37 mitochondrial genes and a non-coding AT-rich region. The genome arrangement is similar to the only other published parastacid mitogenome from the Australian genus Cherax. We infer that the gene order arrangement found in Cherax destructor is common to Australian crayfish and may be a derived feature of the southern hemisphere family Parastacidae. Further, we report to our knowledge, the simplest and fastest protocol for the recovery and assembly of complete mitochondrial genomes using the MiSeq benchtop sequencer.
    BMC Evolutionary Biology 02/2014; 14(1):19. · 3.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We determined the complete mitochondrial (mt) genome sequence of the red king crab, Paralithodes camtschaticus (Decapoda, Anomura). P. camtschaticus is one of the largest arthropods and the most expensive commercially available gourmet seafood. The genome sequence of P. camtschaticus is 16,720 bp in size and its gene content, gene order, and transcriptional polarity are almost identical to those of the hermit crab Pagurus longicarpus, which is thought to be derived from a common ancestor. However, P. camtschaticus mtDNA showed tRNA translocation in two blocks compared to that of P. longicarpus. Prior to this study, complete mt genomes of only two species of Anomura have been reported. Thus, our genomic data will provide additional information for constructing the decapod phylogeny.
    Mitochondrial DNA 01/2013; · 1.71 Impact Factor