Article

Human Langerhans cells capture measles virus through Langerin and present viral antigens to CD4⁺ T cells but are incapable of cross-presentation.

Center of Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
European Journal of Immunology (Impact Factor: 4.97). 07/2011; 41(9):2619-31. DOI: 10.1002/eji.201041305
Source: PubMed

ABSTRACT Langerhans cells (LCs) are a subset of DCs that reside in the upper respiratory tract and are ideally suited to sense respiratory virus infections. Measles virus (MV) is a highly infectious lymphotropic and myelotropic virus that enters the host via the respiratory tract. Here, we show that human primary LCs are capable of capturing MV through the C-type lectin Langerin. Both immature and mature LCs presented MV-derived antigens in the context of HLA class II to MV-specific CD4(+) T cells. Immature LCs were not susceptible to productive infection by MV and did not present endogenous viral antigens in the context of HLA class I. In contrast, mature LCs could be infected by MV and presented de novo synthesized viral antigens to MV-specific CD8(+) T cells. Notably, neither immature nor mature LCs were able to cross-present exogenous UV-inactivated MV or MV-infected apoptotic cells. The lack of direct infection of immature LCs, and the inability of both immature and mature LCs to cross-present MV antigens, suggest that human LCs may not be directly involved in priming MV-specific CD8(+) T cells. Immune activation of LCs seems a prerequisite for MV infection of LCs and subsequent CD8(+) T-cell priming via the endogenous antigen presentation pathway.

0 Bookmarks
 · 
113 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite significant effort, the development of effective vaccines inducing strong and durable T-cell responses against intracellular pathogens and cancer cells has remained a challenge. The initiation of effector CD8(+) T-cell responses requires the presentation of peptides derived from internalized antigen on class I major histocompatibility complex molecules by dendritic cells (DCs) in a process called cross-presentation. A current strategy to enhance the effectiveness of vaccination is to deliver antigens directly to DCs. This is done via selective targeting of antigen using monoclonal antibodies directed against endocytic receptors on the surface of the DCs. In this review, we will discuss considerations relevant to the design of such vaccines: the existence of DC subsets with specialized functions, the impact of the antigen intracellular trafficking on cross-presentation, and the influence of maturation signals received by DCs on the outcome of the immune response.
    Frontiers in Immunology 01/2014; 5:255.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Effective viral clearance requires the induction of virus-specific CD8(+) cytotoxic T lymphocytes (CTL). Since dendritic cells (DC) have a central role in initiating and shaping virus-specific CTL responses, it is important to understand how DC initiate virus-specific CTL responses. Some viruses can directly infect DC, which theoretically allow direct presentation of viral antigens to CTL, but many viruses target other cells than DC and thus the host depends on the cross-presentation of viral antigens by DC to activate virus-specific CTL. Research in mouse models has highly enhanced our understanding of the mechanisms underlying cross-presentation and the dendritic cells (DC) subsets involved, however, these results cannot be readily translated toward the role of human DC in MHC class I-antigen presentation of human viruses. Here, we summarize the insights gained in the past 20 years on MHC class I presentation of viral antigen by human DC and add to the current debate on the capacities of different human DC subsets herein. Furthermore, possible sources of viral antigens and essential DC characteristics for effective induction of virus-specific CTL are evaluated. We conclude that cross-presentation is not only an efficient mechanism exploited by DC to initiate immunity to viruses that do not infect DC but also to viruses that do infect DC, because cross-presentation has many conceptual advantages and bypasses direct immune modulatory effects of the virus on its infected target cells. Since knowledge on the mechanism of viral antigen presentation and the preferred DC subsets is crucial for rational vaccine design, the obtained insights are very instrumental for the development of effective anti-viral immunotherapy.
    Frontiers in Immunology 01/2014; 5:182.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Signalling lymphocyte activation molecule (SLAM) has been identified as an immune cell receptor for the morbilliviruses, measles (MV), canine distemper (CDV), rinderpest and peste des petits ruminants (PPRV) viruses, while CD46 is a receptor for vaccine strains of MV. More recently poliovirus like receptor 4 (PVRL4), also known as nectin 4, has been identified as a receptor for MV, CDV and PPRV on the basolateral surface of polarised epithelial cells. PVRL4 is also up-regulated by MV in human brain endothelial cells. Utilisation of PVRL4 as a receptor by phocine distemper virus (PDV) remains to be demonstrated as well as confirmation of use of SLAM. We have observed that unlike wild type (wt) MV or wtCDV, wtPDV strains replicate in African green monkey kidney Vero cells without prior adaptation, suggesting the use of a further receptor. We therefore examined candidate molecules, glycosaminoglycans (GAG) and the tetraspan proteins, integrin b and the membrane bound form of heparin binding epithelial growth factor (proHB-EGF),for receptor usage by wtPDV in Vero cells. We show that wtPDV replicates in Chinese hamster ovary (CHO) cells expressing SLAM and PVRL4. Similar wtPDV titres are produced in Vero and VeroSLAM cells but more limited fusion occurs in the latter. Infection of Vero cells was not inhibited by anti-CD46 antibody. Removal/disruption of GAG decreased fusion but not the titre of virus. Treatment with anti-integrin b antibody increased rather than decreased infection of Vero cells by wtPDV. However, infection was inhibited by antibody to HB-EGF and the virus replicated in CHO-proHB-EGF cells, indicating use of this molecule as a receptor. Common use of SLAM and PVRL4 by morbilliviruses increases the possibility of cross-species infection. Lack of a requirement for wtPDV adaptation to Vero cells raises the possibility of usage of proHB-EGF as a receptor in vivo but requires further investigation. Competing Interests: The authors can confirm with regard to the current affiliation of one of the authors (Mary Melia) with the company Abott Irelend Diagnostics: This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials. The author carried out all the work in Queen's University Belfast as a Ph.D. student and subsequently moved to the company who have no interest or claim on this work.
    PLoS ONE 08/2014; 9(8):e106281. · 3.53 Impact Factor

Full-text (2 Sources)

Download
4 Downloads
Available from
May 30, 2014