The influence of developmental age on the early transcriptomic response of children with septic shock.

Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, United States of America.
Molecular Medicine (Impact Factor: 4.82). 07/2011; 17(11-12):1146-56. DOI: 10.2119/molmed.2011.00169
Source: PubMed

ABSTRACT Septic shock is a frequent and costly problem among patients in the pediatric intensive care unit (PICU) and is associated with high mortality and devastating survivor morbidity. Genome-wide expression patterns can provide molecular granularity of the host response and offer insight into why large variations in outcomes exist. We derived whole-blood genome-wide expression patterns within 24 h of PICU admission from children with septic shock. We compared the transcriptome between septic shock developmental-age groups defined as neonates (≤ 28 d, n = 17), infants (1 month to 1 year, n = 62), toddlers (2-5 years, n = 54) and school-age (≥ 6 years, n = 47) and age-matched controls. Direct intergroup comparisons demonstrated profound changes in neonates, relative to older children. Neonates with septic shock demonstrated reduced expression of genes representing key pathways of innate and adaptive immunity. In contrast to the largely upregulated transcriptome in all other groups, neonates exhibited a predominantly downregulated transcriptome when compared with controls. Neonates and school-age subjects had the most uniquely regulated genes relative to controls. Age-specific studies of the host response are necessary to identify developmentally relevant translational opportunities that may lead to improved sepsis outcomes.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: The prevalence of immune-mediated diseases, such as allergies and type 1 diabetes, is on the rise in the developed world. In order to explore differences in the gene expression patterns induced in utero in infants born in contrasting standards of living and hygiene, we collected umbilical cord blood RNA samples from infants born in Finland (modern society), Estonia (rapidly developing society) and the Republic of Karelia, Russia (poor economic conditions). The whole blood transcriptome of Finnish and Estonian neonates differed from their Karelian counterparts, suggesting exposure to toll-like receptor (TLR) ligands and a more matured immune response in infants born in Karelia. These results further support the concept of a conspicuous plasticity in the developing immune system: the environmental factors that play a role in the susceptibility/protection towards immune-mediated diseases begin to shape the neonatal immunity already in utero and direct the maturation in accordance with the surrounding microbial milieu.
    Clinical Immunology 09/2014; · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IntroductionIncreasing evidence supports a role for mitochondrial dysfunction in organ injury and immune dysregulation in sepsis. Although differential expression of mitochondrial genes in blood cells has been reported for several diseases in which bioenergetic failure is a postulated mechanism, there are no data about the blood cell mitochondrial transcriptome in pediatric sepsis.Methods We conducted a focused analysis using a multicenter genome-wide expression database of 180 children ¿10 years of age with septic shock and 53 healthy controls. Using total RNA isolated from whole blood within 24 hours of PICU admission for septic shock, we evaluated 296 nuclear-encoded mitochondrial genes using a false discovery rate of 1%. A series of bioinformatic approaches were applied to compare differentially expressed genes across previously validated gene expression-based subclasses (groups A, B, and C) of pediatric septic shock.ResultsIn total, 118 genes were differentially regulated in subjects with septic shock compared to healthy controls, including 48 genes that were up-regulated and 70 that were down-regulated. The top scoring canonical pathway was oxidative phosphorylation, with general down-regulation of the 51 genes corresponding to the electron transport system (ETS). The top two gene networks were composed primarily of mitochondrial ribosomal proteins highly connected to ETS complex I, and genes encoding for ETS complexes I, II, and IV that were highly connected to the peroxisome proliferator activated receptor (PPAR) family. There were 162 mitochondrial genes differentially regulated between groups A, B, and C. Group A, which had the highest maximum number of organ failures and mortality, exhibited a greater down-regulation of mitochondrial genes compared to groups B and C.Conclusions Based on a focused analysis of a pediatric septic shock transcriptomic database, nuclear-encoded mitochondrial genes were differentially regulated early in pediatric septic shock compared to healthy controls, as well as across genotypic and phenotypic distinct pediatric septic shock subclasses. The nuclear genome may be an important mechanism contributing to alterations in mitochondrial bioenergetic function and outcomes in pediatric sepsis.
    Critical care (London, England) 11/2014; 18(6):623. · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Streptococcus agalactiae (Group B streptococcus, GBS) is highly adapted to humans, where it is a normal constituent of the intestinal and vaginal flora. Yet, GBS has highly invasive potential and causes excessive inflammation, sepsis, and death at the beginning of life, in the elderly and in diabetic patients. Thus, GBS is a model pathobiont that thrives in the healthy host, but has not lost its potential virulence during coevolution with mankind. It remains incompletely understood how the innate immune system contains GBS in the natural niches, the intestinal and genital tracts, and which molecular events underlie breakdown of mucocutaneous resistance. Newborn infants between days 7 and 90 of life are at risk of a particularly striking sepsis manifestation (late-onset disease), where the transition from colonization to invasion and dissemination, and thus from health to severe sepsis is typically fulminant and not predictable. The great majority of late-onset sepsis cases are caused by one clone, GBS ST17, which expresses HvgA as a signature virulence factor and adhesin. In mice, HvgA promotes the crossing of both the mucosal and the blood-brain barrier. Expression levels of HvgA and other GBS virulence factors, such as pili and toxins, are regulated by the upstream two-component control system CovR/S. This in turn is modulated by acidic epithelial pH, high glucose levels, and during the passage through the mouse intestine. After invasion, GBS has the ability to subvert innate immunity by mechanisms like glycerinaldehyde-3-phosphate-dehydrogenase-dependent induction of IL-10 and β-protein binding to the inhibitory phagocyte receptors sialic acid binding immunoglobulin-like lectin 5 and 14. On the host side, sensing of GBS nucleic acids and lipopeptides by both Toll-like receptors and the inflammasome appears to be critical for host resistance against GBS. Yet, comprehensive models on the interplay between GBS and human immune cells at the colonizing site are just emerging.
    Frontiers in Immunology 10/2014; 5:1-11.

Full-text (2 Sources)

Available from
Jun 4, 2014