Chromosome abnormalities and the genetics of congenital corneal opacfication

Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital, London, UK.
Molecular vision (Impact Factor: 1.99). 06/2011; 17:1624-40.
Source: PubMed


Congenital corneal opacification (CCO) encompasses a broad spectrum of disorders that have different etiologies, including genetic and environmental. Terminology used in clinical phenotyping is commonly not specific enough to describe separate entities, for example both the terms Peters anomaly and sclerocornea have been ascribed to a clinical picture of total CCO, without investigating the presence or absence of iridocorneal adhesions. This is not only confusing but also unhelpful in determining valid genotype-phenotype correlations, and thereby revealing clues for pathogenesis. We undertook a systematic review of the literature focusing on CCO as part of anterior segment developmental anomalies (ASDA), and analyzed its association specifically with chromosomal abnormalities. Genes previously identified as being associated with CCO are also summarized. All reports were critically appraised to classify phenotypes according to described features, rather than the given diagnosis. Some interesting associations were found, and are discussed.

Download full-text


Available from: Asimina Mataftsi,
53 Reads
  • Source
    • "Sclerocornea is a rare form of CCO. Genes implicated in CCO include paired box 6 (PAX6), pituitary homeobox 2 (PITX2), forkhead box C1 (FOXC1), forkhead box E3 (FOXE3), β1,3-galactosyltransferase-like (B3GALTL), and keratocan (KERA), indicating heterogeneity in a genetic aberration of CCO [21]. For surgical outcomes in infants with CCO, Comer et al. reported overall first graft survival at 12 months was 61%, with ten of 16 eyes retaining a clear corneal graft [10]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: To understand whether the epithelial phenotype in total sclerocornea is corneal or conjunctival in origin. Four cases of total sclerocornea (male:female = 1:3; mean age = 5.4±4.3; 1-11 years old) who received penetrating keratoplasty (PKP) at our hospital between 2008 and 2011 were included. Corneal buttons obtained during PKP were used for transmission electron microscopy (TEM) as well as immunoconfocal microscopy for cytokeratins 3, 12, and 13, goblet cell mucin MUC5AC, connexin 43, stem cell markers p63 and ABCG2, laminin-5, and fibronectin. After a mean follow-up period of 38.8±14.0 (12-54) months, the grafts remained clear in half of the patients. TEM examination revealed a markedly attenuated Bowman's layer in the scleralized corneas, with irregular and variably thinned collagen lamellar layers, and disorganization and random distribution of collagen fibrils, which were much larger in diameter compared with a normal cornea. Immunoconfocal microscopy showed that keratin 3 was expressed in all four patients, while p63, ABCG2, and MUC5AC were all absent. Cornea-specific keratin 12 was universally expressed in Patients 1 to 3, while mucosa (including conjunctiva)-specific keratin 13 was negative in these patients. Interestingly, keratin 12 and 13 were expressed in Patient 4 in a mutually exclusive manner. Linear expression of laminin-5 in the basement membrane zone and similar expression of fibronectin were observed. The epithelia in total sclerocornea are essentially corneal in phenotype, but in the event of massive corneal angiogenesis, invasion by the conjunctival epithelium is possible.
    Molecular vision 04/2014; 20:468-xxx. · 1.99 Impact Factor
  • Source
    • "The majority of cases occur sporadically, but recessive and dominant familial inheritance is also well documented [7,8]. Sclerocornea can occur alone, in association with other ocular defects, or with systemic features as part of a known syndromic entity [9,10]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the molecular epidemiological basis for the unusually high incidence of sclerocornea, aphakia, and microphthalmia in a village in the Tlaxcala province of central Mexico. A population census was performed in a village to identify all sclerocornea, aphakia, and microphthalmia cases. Molecular analysis of the previously identified Forkhead box protein E3 (FOXE3) mutation, c.292T>C (p.Y98H), was performed with PCR amplification and direct DNA sequencing. In addition, DNA from 405 randomly selected unaffected villagers was analyzed to establish the carrier frequency of the causal mutation. To identify the number of generations since the mutation arose in the village, 17 polymorphic markers distributed in a region of 6 Mb around the mutated locus were genotyped in the affected individuals, followed by DMLE software analysis to calculate mutation age. A total of 22 patients with sclerocornea, aphakia, and microphthalmia were identified in the village, rendering a disease prevalence of 2.52 cases per 1,000 habitants (1 in 397). The FOXE3 homozygous mutation was identified in all 17 affected subjects who consented to molecular analysis. Haplotype analysis indicated that the mutation arose 5.0-6.5 generations ago (approximately 106-138 years). Among the 405 unaffected villagers who were genotyped, ten heterozygote carriers were identified, yielding a population carrier frequency of approximately 1 in 40 and a predicted incidence of affected of 1 in 6,400 based on random marriages between two carriers in the village. This study demonstrates that a cluster of patients with sclerocornea, aphakia, and microphthalmia in a small Mexican village is due to a FOXE3 p.Y98H founder mutation that arose in the village just over a century ago at a time when a population migrated from a nearby village because of land disputes. The actual disease incidence is higher than the calculated predicted value and suggests non-random marriages (i.e., consanguinity) within the population. We can now offer the community more informed genetic counseling based on an accurate genetic test, thus increasing the likelihood of a better outcome for the families.
    Molecular vision 08/2013; 19:1866-70. · 1.99 Impact Factor
  • Source
    • "The FOX genes belong to the forkhead family of transcription factors, and they are usually considered to be potentially responsible for eye defects in 6p trisomies [Mataftsi et al., 2011]. The FOXC1 gene is characterised by a distinct DNA-binding forkhead domain. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The first child (proband) of nonconsanguineous Caucasian parents underwent genetic investigation because she was affected with congenital choanal atresia, heart defects and kidney hyposplasia with mild transient renal insufficiency. The direct DNA sequencing after PCR of the CHD7 gene, which is thought to be responsible for approximately 60-70% of the cases of CHARGE syndrome/association, found no mutations. The cytogenetic analysis (standard GTG banding karyotype) revealed the presence of extrachromosomal material on 10q. The chromosome analysis was completed with array CGH (30 kb resolution), MLPA and FISH, which allowed the identification of three 6p regions (6p25.3p23 × 3): 2 of these regions are normally located on chromosome 6, and the third region is translocated to the long arm of chromosome 10. The same chromosomal rearrangement was subsequently found in the father, who was affected with congenital ptosis and progressive hearing loss, and in the proband's sister, the second child, who presented at birth with choanal atresia and congenital heart defects. The mutated karyotypes, which were directly inherited, are thought to be responsible for a variable phenotype, including craniofacial dysmorphisms, choanal atresia, congenital ptosis, sensorineural hearing loss, heart defects, developmental delay, and renal dysfunction. Nevertheless, to achieve a complete audiological assessment of the father, he underwent further investigation that revealed an increased level of the coagulation factor XIII (300% increased activity), fluctuating levels of fibrin D-dimer degradation products (from 296 to 1,587 ng/ml) and a homoplasmic mitochondrial DNA mutation: T961G in the MTRNR1 (12S rRNA) gene. He was made a candidate for cochlear implantation. Preoperative high-resolution computed tomography and magnetic resonance imaging of the temporal bone revealed the presence of an Arnold-Chiari malformation type I. To the best of our knowledge, this study is the second report on partial 6p trisomy that involves the 10q terminal region. Furthermore, we report the first case of documented Arnold-Chiari malformation type I and increased factor XIII activity associated with 6p trisomy. We present a comprehensive report of the familial cases and an exhaustive literature review.
    Cytogenetic and Genome Research 08/2013; 141(4). DOI:10.1159/000353846 · 1.56 Impact Factor
Show more