Article

Insights into EB1 structure and the role of its C-terminal domain for discriminating microtubule tips from the lattice.

Biomolecular Research, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.
Molecular biology of the cell (Impact Factor: 5.98). 08/2011; 22(16):2912-23. DOI: 10.1091/mbc.E11-01-0017
Source: PubMed

ABSTRACT End-binding proteins (EBs) comprise a conserved family of microtubule plus end-tracking proteins. The concerted action of calponin homology (CH), linker, and C-terminal domains of EBs is important for their autonomous microtubule tip tracking, regulation of microtubule dynamics, and recruitment of numerous partners to microtubule ends. Here we report the detailed structural and biochemical analysis of mammalian EBs. Small-angle X-ray scattering, electron microscopy, and chemical cross-linking in combination with mass spectrometry indicate that EBs are elongated molecules with two interacting CH domains, an arrangement reminiscent of that seen in other microtubule- and actin-binding proteins. Removal of the negatively charged C-terminal tail did not affect the overall conformation of EBs; however, it increased the dwell times of EBs on the microtubule lattice in microtubule tip-tracking reconstitution experiments. An even more stable association with the microtubule lattice was observed when the entire negatively charged C-terminal domain of EBs was replaced by a neutral coiled-coil motif. In contrast, the interaction of EBs with growing microtubule tips was not significantly affected by these C-terminal domain mutations. Our data indicate that long-range electrostatic repulsive interactions between the C-terminus and the microtubule lattice drive the specificity of EBs for growing microtubule ends.

0 Bookmarks
 · 
121 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chemical cross-linking in combination with LC-MS/MS (XL-MS) is an emerging technology to obtain low-resolution structural (distance) restraints of proteins and protein complexes. These restraints can also be used to characterize protein complexes by integrative modeling of the XL-MS data, either in combination with other types of structural information or by themselves, to establish spatial relationships of subunits in protein complexes. Here we present a protocol that has been successfully used to generate XL-MS data from a multitude of native proteins and protein complexes. It includes the experimental steps for performing the cross-linking reaction using disuccinimidyl suberate (a homobifunctional, lysine-reactive cross-linking reagent), the enrichment of cross-linked peptides by peptide size-exclusion chromatography (SEC; to remove smaller, non-cross-linked peptides), instructions for tandem MS analysis and the analysis of MS data via the open-source computational software pipeline xQuest and xProphet (available from http://proteomics.ethz.ch). Once established, this robust protocol should take ∼4 d to complete, and it is generally applicable to purified proteins and protein complexes.
    Nature Protocol 01/2014; 9(1):120-37. · 8.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diverse cellular processes require microtubules to be organized into distinct structures, such as asters or bundles. Within these dynamic motifs, microtubule-associated proteins (MAPs) are frequently under load, but how force modulates these proteins' function is poorly understood. Here, we combine optical trapping with TIRF-based microscopy to measure the force dependence of microtubule interaction for three nonmotor MAPs (NuMA, PRC1, and EB1) required for cell division. We find that frictional forces increase nonlinearly with MAP velocity across microtubules and depend on filament polarity, with NuMA's friction being lower when moving toward minus ends, EB1's lower toward plus ends, and PRC1's exhibiting no directional preference. Mathematical models predict, and experiments confirm, that MAPs with asymmetric friction can move directionally within actively moving microtubule pairs they crosslink. Our findings reveal how nonmotor MAPs can generate frictional resistance in dynamic cytoskeletal networks via micromechanical adaptations whose anisotropy may be optimized for MAP localization and function within cellular structures.
    Cell 04/2014; 157(2):420-32. · 31.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proper microtubule polarity underlies overall neuronal polarity, but mechanisms for maintaining microtubule polarity are not well understood. Previous live imaging in Drosophila dendritic arborization neurons showed that while microtubules are uniformly plus-end out in axons, dendrites possess uniformly minus-end-out microtubules [1]. Thus, maintaining uniform microtubule polarity in dendrites requires that growing microtubule plus ends entering branch points be actively directed toward the cell body. A model was proposed in which EB1 tracks the plus ends of microtubules growing into a branch and an associated kinesin-2 motor walks along a static microtubule to steer the plus end toward the cell body. However, the fast plus-end binding dynamics of EB1 [2-5] appear to be at odds with this proposed mechanical function. To test this model in vitro, we reconstituted the system by artificially dimerizing EB1 to kinesin, growing microtubules from immobilized seeds, and imaging encounters between growing microtubule plus ends and static microtubules. Consistent with in vivo observations, the EB1-kinesin complex actively steered growing microtubules. Thus, EB1 kinetics and mechanics are sufficient to bend microtubules for several seconds. Other kinesins also demonstrated this activity, suggesting this is a general mechanism for organizing and maintaining proper microtubule polarity in cells.
    Current biology: CB 01/2014; · 10.99 Impact Factor

Full-text

View
4 Downloads
Available from