Prodrugs--from serendipity to rational design.

School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
Pharmacological reviews (Impact Factor: 17). 09/2011; 63(3):750-71. DOI: 10.1124/pr.110.003459
Source: PubMed

ABSTRACT The prodrug concept has been used to improve undesirable properties of drugs since the late 19th century, although it was only at the end of the 1950s that the actual term prodrug was introduced for the first time. Prodrugs are inactive, bioreversible derivatives of active drug molecules that must undergo an enzymatic and/or chemical transformation in vivo to release the active parent drug, which can then elicit its desired pharmacological effect in the body. In most cases, prodrugs are simple chemical derivatives that are only one or two chemical or enzymatic steps away from the active parent drug. However, some prodrugs lack an obvious carrier or promoiety but instead result from a molecular modification of the prodrug itself, which generates a new active compound. Numerous prodrugs designed to overcome formulation, delivery, and toxicity barriers to drug utilization have reached the market. In fact, approximately 20% of all small molecular drugs approved during the period 2000 to 2008 were prodrugs. Although the development of a prodrug can be very challenging, the prodrug approach represents a feasible way to improve the erratic properties of investigational drugs or drugs already on the market. This review introduces in depth the rationale behind the use of the prodrug approach from past to present, and also considers the possible problems that can arise from inadequate activation of prodrugs.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: INTRODUCTION: The molecular revolution greatly impacted the field of drug design and delivery in general, and the utilization of the prodrug approach in particular. The increasing understanding of membrane transporters has promoted a novel 'targeted-prodrug' approach utilizing carrier-mediated transport to increase intestinal permeability, as well as specific enzymes to promote activation to the parent drug. AREAS COVERED: This article provides the reader with a concise overview of this modern approach to prodrug design. Targeting the oligopeptide transporter PEPT1 for absorption and the serine hydrolase valacyclovirase for activation will be presented as examples for the successful utilization of this approach. Additionally, the use of computational approaches, such as DFT and ab initio molecular orbital methods, in modern prodrugs design will be discussed. EXPERT OPINION: Overall, in the coming years, more and more information will undoubtedly become available regarding intestinal transporters and potential enzymes that may be exploited for the targeted modern prodrug approach. Hence, the concept of prodrug design can no longer be viewed as merely a chemical modification to solve problems associated with parent compounds. Rather, it opens promising opportunities for precise and efficient drug delivery, as well as enhancement of treatment options and therapeutic efficacy.
    Expert Opinion on Drug Delivery 06/2012; 9(8):1001-13. · 4.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ursodeoxycholic acid (UDCA) is a bile acid with demonstrated anti-apoptotic activity in both in vitro and in vivo models. However, its utility is hampered by limited aqueous solubility. As such, water-soluble prodrugs of UDCA could have an advantage over the parent bile acid in indications where intravenous administration might be preferable, such as decreasing damage from stroke or acute kidney injury. Five phosphate prodrugs were synthesized, including one incorporating a novel phosphoryloxymethyl carboxylate (POMC) moiety. These prodrugs were highly water-soluble, but showed significant differences in chemical stability, with oxymethylphosphate prodrugs being the most unstable. In a series of NMR experiments, the POMC prodrug was bioactivated to UDCA by alkaline phosphatase (AP) faster than a prodrug containing a phosphate directly attached to the alcohol at the 3-position of UDCA. Both of these prodrugs showed significant anti-apoptotic activity in a series of in vitro assays, although the POMC prodrug required the addition of AP for activity, while the other compound was active without exogenous AP.
    ChemMedChem 05/2013; · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The level of expression of cannabinoid receptor type 2 (CB2R) in healthy and diseased brain has not been fully elucidated. Therefore, there is a growing interest to assess the regional expression of CB2R in the brain. Positron emission tomography (PET) is an imaging technique, which allows quantitative monitoring of very low amounts of radiolabelled compounds in living organisms at high temporal and spatial resolution and, thus, has been widely used as a diagnostic tool in nuclear medicine. Here, we report on the radiofluorination of N-aryl-oxadiazolyl-propionamides at two different positions in the lead structure and on the biological evaluation of the potential of the two tracers [18F]1 and [18F]2 as CB2 receptor PET imaging agents. High binding affinity and specificity towards CB2 receptors of the lead structure remained unaffected by the structural changes such as the insertion of the aliphatic and aromatic fluorine in the selected labelling sites of 1 and 2. Aliphatic and aromatic radiofluorinations were optimized, and [18F]1 and [18F]2 were achieved in radiochemical yields of >=30% with radiochemical purities of >=98% and specific activities of 250 to 450 GBq/mumol. Organ distribution studies in female CD1 mice revealed that both radiotracers cross the blood--brain barrier (BBB) but undergo strong peripheral metabolism. At 30 min after injection, unmetabolized [18F]1 and [18F]2 accounted for 60% and 2% as well as 66% and 80% of the total activity in the plasma and brain, respectively. The main radiometabolite of [18F]2 could be identified as the free acid [18F]10, which has no affinity towards the CB1 and CB2 receptors but can cross the BBB. N-aryl-oxadiazolyl-propionamides can successfully be radiolabelled with 18F at different positions. Fluorine substitution at these positions did not affect affinity and specificity towards CB2R. Despite a promising in vitro behavior, a rather rapid peripheral metabolism of [18F]1 and [18F]2 in mice and the generation of brain permeable radiometabolites hamper the application of these radiotracers in vivo. However, it is expected that future synthetic modification aiming at a replacement of metabolically susceptible structural elements of [18F]1 and [18F]2 will help to elucidate the potential of this class of compounds for CB2R PET studies.
    Organic and medicinal chemistry letters. 09/2013; 3(1):11.


Available from
May 21, 2014