Prodrugs--from serendipity to rational design.

School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
Pharmacological reviews (Impact Factor: 18.55). 09/2011; 63(3):750-71. DOI: 10.1124/pr.110.003459
Source: PubMed

ABSTRACT The prodrug concept has been used to improve undesirable properties of drugs since the late 19th century, although it was only at the end of the 1950s that the actual term prodrug was introduced for the first time. Prodrugs are inactive, bioreversible derivatives of active drug molecules that must undergo an enzymatic and/or chemical transformation in vivo to release the active parent drug, which can then elicit its desired pharmacological effect in the body. In most cases, prodrugs are simple chemical derivatives that are only one or two chemical or enzymatic steps away from the active parent drug. However, some prodrugs lack an obvious carrier or promoiety but instead result from a molecular modification of the prodrug itself, which generates a new active compound. Numerous prodrugs designed to overcome formulation, delivery, and toxicity barriers to drug utilization have reached the market. In fact, approximately 20% of all small molecular drugs approved during the period 2000 to 2008 were prodrugs. Although the development of a prodrug can be very challenging, the prodrug approach represents a feasible way to improve the erratic properties of investigational drugs or drugs already on the market. This review introduces in depth the rationale behind the use of the prodrug approach from past to present, and also considers the possible problems that can arise from inadequate activation of prodrugs.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: N-acyloxyalkylation of NH-acidic compounds can be a prodrug approach for e.g. tertiary or some N-heterocyclic amines and secondary amides and have the potential to modify the properties of the parent drug for specific uses, for example its physicochemical, pharmacokinetic or biopharmaceutical properties. Aripiprazole lauroxil was prepared as a model compound for such prodrugs and its bioconversion was investigated both in vitro and in vivo. Theoretically, N-acyloxyalkyl derivates of NH-acid compounds undergo a two-step bioconversion into the parent NH-acidic drug through an N-hydroxyalkyl intermediate. However, to our knowledge no published studies have investigated the formation of an intermediate in vivo. In the present study, it was demonstrated that the assumed N-hydroxymethyl intermediate was readily observed both in vitro and in vivo. In vivo, the observed plasma concentration of the intermediate was at the same level as the drug (aripiprazole). When prodrug intermediates are formed, it is important to make a proper pharmacological, pharmacokinetic and toxicological evaluation of the intermediates to ensure patient safety; however, several challenges were identified when testing an N-acyloxyalkyl prodrug. These included the development of a suitable bioanalytical method, the accurate prediction of prodrug bioconversion and thereby the related pharmacokinetics in humans and the toxicological potential of the intermediate.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We exploit the recent availability of a community reconstruction of the human metabolic network ('Recon2') to study how close in structural terms are marketed drugs to the nearest known metabolite(s) that Recon2 contains. While other encodings using different kinds of chemical fingerprints give greater differences, we find using the 166 Public MDL Molecular Access (MACCS) keys that 90 % of marketed drugs have a Tanimoto similarity of more than 0.5 to the (structurally) 'nearest' human metabolite. This suggests a 'rule of 0.5' mnemonic for assessing the metabolite-like properties that characterise successful, marketed drugs. Multiobjective clustering leads to a similar conclusion, while artificial (synthetic) structures are seen to be less human-metabolite-like. This 'rule of 0.5' may have considerable predictive value in chemical biology and drug discovery, and may represent a powerful filter for decision making processes.
    Metabolomics 04/2015; 11(2). DOI:10.1007/s11306-014-0745-8 · 3.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Supramolecularly constructing multifunctional platform for drug delivery is a challenging task. In this work, we propose a novel supramolecular strategy "drug chaperone", in which macrocyclic amphiphiles directly coassemble with cationic drugs into a multifunctional platform and its surface is further decorated with targeting ligands through host-guest recognition. The coassembling and hierarchical decoration processes were monitored by optical transmittance measurements, and the size and morphology of amphiphilic coassemblies were identified by dynamic light scattering and high-resolution transmission electron microscopy. In cell experiments to validate the drug chaperone strategy, the anticancer activities of free drugs were pronouncedly improved by coassembling with amphiphilic chaperone and further functionalization with targeting ligand.


Available from
May 21, 2014