Resistant starch and exercise independently attenuate weight regain on a high fat diet in a rat model of obesity

Center for Human Nutrition, Anschutz Medical Campus, University of Colorado Denver
Nutrition & Metabolism (Impact Factor: 3.36). 07/2011; 8:49. DOI: 10.1186/1743-7075-8-49
Source: PubMed

ABSTRACT Long-term weight reduction remains elusive for many obese individuals. Resistant starch (RS) and exercise may be useful for weight maintenance. The effects of RS, with or without exercise, on weight regain was examined during relapse to obesity on a high carbohydrate, high fat (HC/HF) diet.
Obesity-prone rats were fed ad libitum for 16 weeks then weight reduced on a low fat diet to induce a 17% body weight loss (weight reduced rats). Weight reduced rats were maintained on an energy-restricted low fat diet for 18 weeks, with or without a daily bout of treadmill exercise. Rats were then allowed free access to HC/HF diet containing low (0.3%) or high (5.9%) levels of RS. Weight regain, energy balance, body composition, adipocyte cellularity, and fuel utilization were monitored as rats relapsed to obesity and surpassed their original, obese weight.
Both RS and exercise independently attenuated weight regain by reducing the energy gap between the drive to eat and suppressed energy requirements. Exercise attenuated the deposition of lean mass during relapse, whereas its combination with RS sustained lean mass accrual as body weight returned. Early in relapse, RS lowered insulin levels and reduced the deposition of fat in subcutaneous adipose tissue. Exercise cessation at five weeks of relapse led to increased weight gain, body fat, subcutaneous adipocytes, and decreased lean mass; all detrimental consequences to overall metabolic health.
These data are the first to show the complimentary effects of dietary RS and regular exercise in countering the metabolic drive to regain weight following weight loss and suggest that exercise cessation, in the context of relapse on a HC/HF diet, may have dire metabolic consequences.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The obesity epidemic has prompted researchers to find effective weight-loss and maintenance tools. Weight loss and subsequent maintenance are reliant on energy balance-the net difference between energy intake and energy expenditure. Negative energy balance, lower intake than expenditure, results in weight loss whereas positive energy balance, greater intake than expenditure, results in weight gain. Resistant starch has many attributes, which could promote weight loss and/or maintenance including reduced postprandial insulinemia, increased release of gut satiety peptides, increased fat oxidation, lower fat storage in adipocytes, and preservation of lean body mass. Retention of lean body mass during weight loss or maintenance would prevent the decrease in basal metabolic rate and, therefore, the decrease in total energy expenditure, that occurs with weight loss. In addition, the fiber-like properties of resistant starch may increase the thermic effect of food, thereby increasing total energy expenditure. Due to its ability to increase fat oxidation and reduce fat storage in adipocytes, resistant starch has recently been promoted in the popular press as a "weight loss wonder food". This review focuses on data describing the effects of resistant starch on body weight, energy intake, energy expenditure, and body composition to determine if there is sufficient evidence to warrant these claims.
    Critical reviews in food science and nutrition 02/2014; 54(9):1158-66. DOI:10.1080/10408398.2011.629352 · 5.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Resistant starch has potential health benefits but the factors affecting its formation in bread and baked products are not well studied. Here, the formation of resistant starch in wholemeal bread products was evaluated in relation to the processing conditions including fermentation time, temperature and the inclusion of palm oil as a vitamin source. The effects of each the factor were assessed using a full factorial design. The impact on final starch content of traditional sourdough fermentation of wholemeal rye bread, as well as the bulk fermentation process of wheat and wheat/oat blends of wholemeal bread, was also assessed by enzyme assay. Palm oil content was found to have a significant effect on the formation of resistant starch in all of the breads while fermentation time and temperature had no significant impact. Sourdough fermentation of rye bread was found to have a greater impact on resistant starch formation than bulk fermentation of wheat and wheat blend breads, most likely due the increased organic acid content of the sourdough process. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Food Chemistry 02/2015; DOI:10.1016/j.foodchem.2015.02.044 · 3.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Weight regain after weight loss is a substantial challenge in obesity therapeutics. Dieting leads to significant adaptations in the homeostatic system that controls body weight, which promotes overeating and the relapse to obesity. In this review, we focus specifically on the adaptations in white adipose tissues that contribute to the biological drive to regain weight after weight loss. Weight loss leads to a reduction in size of adipocytes and this decline in size alters their metabolic and inflammatory characteristics in a manner that facilitates the clearance and storage of ingested energy. We present the hypothesis whereby the long-term signals reflecting stored energy and short-term signals reflecting nutrient availability are derived from the cellularity characteristics of adipose tissues. These signals are received and integrated in the hypothalamus and hindbrain and an energy gap between appetite and metabolic requirements emerges and promotes a positive energy imbalance and weight regain. In this paradigm, the cellularity and metabolic characteristics of adipose tissues after energy-restricted weight loss could explain the persistence of a biological drive to regain weight during both weight maintenance and the dynamic period of weight regain. © 2015 The Authors. Obesity reviews © 2015 International Association for the Study of Obesity.
    Obesity Reviews 02/2015; 16 Suppl 1:45-54. DOI:10.1111/obr.12255 · 7.86 Impact Factor

Full-text (4 Sources)

Available from
May 23, 2014