RUNX2 mutations in Taiwanese patients with cleidocranial dysplasia

Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
Genetics and Molecular Biology (Impact Factor: 1.2). 04/2011; 34(2):201-4. DOI: 10.1590/S1415-47572011005000002
Source: PubMed


Cleidocranial dysplasia (CCD) is an autosomal dominant human skeletal disorder comprising hypoplastic clavicles, wide cranial sutures, supernumerary teeth, short stature, and other skeletal abnormalities. It is known that mutations in the human RUNX2 gene mapped at 6p21 are responsible for CCD. We analyzed the mutation patterns of the RUNX2 gene by direct sequencing in six Taiwanese index cases with typical CCD. One of the patients was a familial case and the others were sporadic cases. Sequencing identified four mutations. Three were caused by single nucleotide substitutions, which created a nonsense (p.R391X), two were missense mutations (p.R190W, p.R225Q), and the forth was a novel mutation (c.1119delC), a one-base deletion. Real time quantitative PCR adapted to determine copy numbers of the promoter, all exons and the 3'UTR region of the RUNX2 gene detected the deletion of a single allele in a sporadic case. The results extend the spectrum of RUNX2 mutations in CCD patients and indicate that complete deletions of the RUNX2 gene should be considered in those CCD patients lacking a point mutation detected by direct sequencing.

Download full-text


Available from: Wei-De Lin, Jan 06, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The burden of inherited diseases in terms of congenital defects and cancer predisposition in addition to a multitude of neurological, cardiovascular and other organ diseases arising sporadically during life is enormous on the individual, immediate family and society globally. I approach this major burden to human society by invoking the powerful technology behind read-through, whereby disease-causing substitution nonsense mutations, oftentimes at the root of human diseases, are rescued. Further, the importance of nonsense mutations in the realm of developmental factors linked to cancer stem cell maintenance is presented. The methodology behind the technique is given and proof of concept behind its use ex vivo and in clinical trials. The discovery of a novel read-through drug, Amlexanox, which has been in use for over twenty years in dentistry for oral ulcerations, represents a next generation read-through agent. This agent has been demonstrated in cell lines to correct functional loss in cystic fibrosis CFTR, dystrophin and the tumour suppressor, p53. Its novel ability to inhibit nonsense mediated decay is discussed. Amlexanox is therefore presently ready for testing in a wide variety of in vivo models of human diseases and also in clinical trials. Given the safety profile of Amlexanox and ex vivo efficacy in studies thus far it is envisaged that this accepted medication shall successfully debut as an all-purpose agent for the prevention and management of human diseases.
    Journal of Bioanalysis and Biomedicine 01/2013; 05(04). DOI:10.4172/1948-593X.1000086
  • [Show abstract] [Hide abstract]
    ABSTRACT: The RUNX2 transcription factor regulates osteoblast differentiation. Its absence, as with cleidocranial dysplasia, results in deficient bone formation. However, its excess seems to follow a dose response of over ossification. RUNX2 duplications (3 copies) are exceedingly rare but have been reported to cause craniosynostosis. There are no existing reports of quadruplications (4 copies). We present a case study of a boy with an atypical skull deformity with pan-craniosynostosis whose microarray analysis revealed 4 copies of a 1.24-Mb region from 6p12.3 to 6p21.1 containing the RUNX2 gene. Further characterization of this osteogenic pathway may aid in our understanding of the pathogenesis and subsequent prevention and treatment of syndromic craniosynostosis.
    The Journal of craniofacial surgery 01/2013; 24(1):126-9. DOI:10.1097/SCS.0b013e31826686d3 · 0.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The runt-related transcription factor 2 gene (RUNX2), which is also known as CBFA1, is a master regulatory gene in bone formation. Mutations in RUNX2 have been identified in cleidocranial dysplasia (CCD) patients. CCD is a rare autosomal dominant skeletal dysplasia that is characterized by delayed closure of cranial sutures, aplastic or hypoplastic clavicle formation, short stature, and dental anomalies, including malocclusion, supernumerary teeth, and delayed eruption of permanent teeth. In this study, we recruited three de novo CCD families and performed mutational analysis of the RUNX2 gene as a candidate gene approach. The mutational study revealed three disease-causing mutations: a missense mutation (c.674G>A, p.Arg225Gln), a frameshift mutation (c.1119delC, p.Arg374Glyfs*), and a nonsense mutation (c.1171C>T, p.Arg391*). Clinical examination revealed a unique dental phenotype (no typical supernumerary teeth, but duplication of anterior teeth) in one patient. We believe that this finding will broaden the understanding of the mechanism of supernumerary teeth formation and CCD-related phenotypes.
    Genetics and molecular research: GMR 10/2013; 12(4):4567-74. DOI:10.4238/2013.October.15.5 · 0.78 Impact Factor
Show more